Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 7b57a0ded1 | |||
| 28904cddbe | |||
| d5bf1ec47e | |||
| cb60a0b0c5 |
1240
package-lock.json
generated
1240
package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@ztimson/ai-utils",
|
||||
"version": "0.2.5",
|
||||
"version": "0.4.0",
|
||||
"description": "AI Utility library",
|
||||
"author": "Zak Timson",
|
||||
"license": "MIT",
|
||||
@@ -30,7 +30,7 @@
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
"@ztimson/node-utils": "^1.0.4",
|
||||
"@ztimson/utils": "^0.27.9",
|
||||
"ollama": "^0.6.0",
|
||||
"cheerio": "^1.2.0",
|
||||
"openai": "^6.6.0",
|
||||
"tesseract.js": "^6.0.1"
|
||||
},
|
||||
|
||||
20
src/ai.ts
20
src/ai.ts
@@ -1,11 +1,22 @@
|
||||
import * as os from 'node:os';
|
||||
import {LLM, LLMOptions} from './llm';
|
||||
import {LLM, AnthropicConfig, OllamaConfig, OpenAiConfig, LLMRequest} from './llm';
|
||||
import { Audio } from './audio.ts';
|
||||
import {Vision} from './vision.ts';
|
||||
|
||||
export type AiOptions = LLMOptions & {
|
||||
export type AbortablePromise<T> = Promise<T> & {abort: () => any};
|
||||
|
||||
export type AiOptions = {
|
||||
/** Path to models */
|
||||
path?: string;
|
||||
/** Large language models, first is default */
|
||||
llm?: Omit<LLMRequest, 'model'> & {
|
||||
models: {[model: string]: AnthropicConfig | OllamaConfig | OpenAiConfig};
|
||||
}
|
||||
/** Tesseract OCR configuration */
|
||||
tesseract?: {
|
||||
/** Model: eng, eng_best, eng_fast */
|
||||
model?: string;
|
||||
}
|
||||
/** Whisper ASR configuration */
|
||||
whisper?: {
|
||||
/** Whisper binary location */
|
||||
@@ -13,11 +24,6 @@ export type AiOptions = LLMOptions & {
|
||||
/** Model: `ggml-base.en.bin` */
|
||||
model: string;
|
||||
}
|
||||
/** Tesseract OCR configuration */
|
||||
tesseract?: {
|
||||
/** Model: eng, eng_best, eng_fast */
|
||||
model?: string;
|
||||
}
|
||||
}
|
||||
|
||||
export class Ai {
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import {Anthropic as anthropic} from '@anthropic-ai/sdk';
|
||||
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse, deepCopy} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
|
||||
import {AbortablePromise, Ai} from './ai.ts';
|
||||
import {LLMMessage, LLMRequest} from './llm.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {LLMProvider} from './provider.ts';
|
||||
|
||||
export class Anthropic extends LLMProvider {
|
||||
client!: anthropic;
|
||||
@@ -51,16 +51,16 @@ export class Anthropic extends LLMProvider {
|
||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
||||
const controller = new AbortController();
|
||||
const response = new Promise<any>(async (res, rej) => {
|
||||
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
|
||||
const original = deepCopy(history);
|
||||
let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
|
||||
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
|
||||
history = this.fromStandard(<any>history);
|
||||
|
||||
const tools = options.tools || this.ai.options.tools || [];
|
||||
const tools = options.tools || this.ai.options.llm?.tools || [];
|
||||
const requestParams: any = {
|
||||
model: options.model || this.model,
|
||||
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
|
||||
system: options.system || this.ai.options.system || '',
|
||||
temperature: options.temperature || this.ai.options.temperature || 0.7,
|
||||
max_tokens: options.max_tokens || this.ai.options.llm?.max_tokens || 4096,
|
||||
system: options.system || this.ai.options.llm?.system || '',
|
||||
temperature: options.temperature || this.ai.options.llm?.temperature || 0.7,
|
||||
tools: tools.map(t => ({
|
||||
name: t.name,
|
||||
description: t.description,
|
||||
@@ -117,9 +117,9 @@ export class Anthropic extends LLMProvider {
|
||||
const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use');
|
||||
if(toolCalls.length && !controller.signal.aborted) {
|
||||
history.push({role: 'assistant', content: resp.content});
|
||||
original.push({role: 'assistant', content: resp.content});
|
||||
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
|
||||
const tool = tools.find(findByProp('name', toolCall.name));
|
||||
if(options.stream) options.stream({tool: toolCall.name});
|
||||
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
|
||||
try {
|
||||
const result = await tool.fn(toolCall.input, this.ai);
|
||||
|
||||
39
src/audio.ts
39
src/audio.ts
@@ -1,7 +1,7 @@
|
||||
import {spawn} from 'node:child_process';
|
||||
import fs from 'node:fs/promises';
|
||||
import Path from 'node:path';
|
||||
import {Ai} from './ai.ts';
|
||||
import {AbortablePromise, Ai} from './ai.ts';
|
||||
|
||||
export class Audio {
|
||||
private downloads: {[key: string]: Promise<string>} = {};
|
||||
@@ -14,37 +14,24 @@ export class Audio {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert audio to text using Auditory Speech Recognition
|
||||
* @param {string} path Path to audio
|
||||
* @param model Whisper model
|
||||
* @returns {Promise<any>} Extracted text
|
||||
*/
|
||||
asr(path: string, model: string = this.whisperModel): {abort: () => void, response: Promise<string | null>} {
|
||||
asr(path: string, model: string = this.whisperModel): AbortablePromise<string | null> {
|
||||
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
|
||||
let abort: any = () => {};
|
||||
const response = new Promise<string | null>((resolve, reject) => {
|
||||
this.downloadAsrModel(model).then(m => {
|
||||
let output = '';
|
||||
const proc = spawn(<string>this.ai.options.whisper?.binary, ['-nt', '-np', '-m', m, '-f', path], {stdio: ['ignore', 'pipe', 'ignore']});
|
||||
abort = () => proc.kill('SIGTERM');
|
||||
proc.on('error', (err: Error) => reject(err));
|
||||
proc.stdout.on('data', (data: Buffer) => output += data.toString());
|
||||
proc.on('close', (code: number) => {
|
||||
if(code === 0) resolve(output.trim() || null);
|
||||
else reject(new Error(`Exit code ${code}`));
|
||||
});
|
||||
const p = new Promise<string | null>(async (resolve, reject) => {
|
||||
const m = await this.downloadAsrModel(model);
|
||||
let output = '';
|
||||
const proc = spawn(<string>this.ai.options.whisper?.binary, ['-nt', '-np', '-m', m, '-f', path], {stdio: ['ignore', 'pipe', 'ignore']});
|
||||
abort = () => proc.kill('SIGTERM');
|
||||
proc.on('error', (err: Error) => reject(err));
|
||||
proc.stdout.on('data', (data: Buffer) => output += data.toString());
|
||||
proc.on('close', (code: number) => {
|
||||
if(code === 0) resolve(output.trim() || null);
|
||||
else reject(new Error(`Exit code ${code}`));
|
||||
});
|
||||
});
|
||||
return {response, abort};
|
||||
return Object.assign(p, {abort});
|
||||
}
|
||||
|
||||
/**
|
||||
* Downloads the specified Whisper model if it is not already present locally.
|
||||
*
|
||||
* @param {string} model Whisper model that will be downloaded
|
||||
* @return {Promise<string>} Absolute path to model file, resolves once downloaded
|
||||
*/
|
||||
async downloadAsrModel(model: string = this.whisperModel): Promise<string> {
|
||||
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
|
||||
if(!model.endsWith('.bin')) model += '.bin';
|
||||
|
||||
11
src/embedder.ts
Normal file
11
src/embedder.ts
Normal file
@@ -0,0 +1,11 @@
|
||||
import { pipeline } from '@xenova/transformers';
|
||||
import { parentPort } from 'worker_threads';
|
||||
|
||||
let model: any;
|
||||
|
||||
parentPort?.on('message', async ({ id, text }) => {
|
||||
if(!model) model = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
const output = await model(text, { pooling: 'mean', normalize: true });
|
||||
const embedding = Array.from(output.data);
|
||||
parentPort?.postMessage({ id, embedding });
|
||||
});
|
||||
@@ -1,4 +1,9 @@
|
||||
export * from './ai';
|
||||
export * from './antrhopic';
|
||||
export * from './audio';
|
||||
export * from './embedder'
|
||||
export * from './llm';
|
||||
export * from './open-ai';
|
||||
export * from './provider';
|
||||
export * from './tools';
|
||||
export * from './vision';
|
||||
|
||||
150
src/llm.ts
150
src/llm.ts
@@ -1,12 +1,16 @@
|
||||
import {pipeline} from '@xenova/transformers';
|
||||
import {JSONAttemptParse} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {AbortablePromise, Ai} from './ai.ts';
|
||||
import {Anthropic} from './antrhopic.ts';
|
||||
import {Ollama} from './ollama.ts';
|
||||
import {OpenAi} from './open-ai.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {LLMProvider} from './provider.ts';
|
||||
import {AiTool} from './tools.ts';
|
||||
import * as tf from '@tensorflow/tfjs';
|
||||
import {Worker} from 'worker_threads';
|
||||
import {fileURLToPath} from 'url';
|
||||
import {dirname, join} from 'path';
|
||||
|
||||
export type AnthropicConfig = {proto: 'anthropic', token: string};
|
||||
export type OllamaConfig = {proto: 'ollama', host: string};
|
||||
export type OpenAiConfig = {proto: 'openai', host?: string, token: string};
|
||||
|
||||
export type LLMMessage = {
|
||||
/** Message originator */
|
||||
@@ -32,32 +36,6 @@ export type LLMMessage = {
|
||||
timestamp?: number;
|
||||
}
|
||||
|
||||
export type LLMOptions = {
|
||||
/** Anthropic settings */
|
||||
anthropic?: {
|
||||
/** API Token */
|
||||
token: string;
|
||||
/** Default model */
|
||||
model: string;
|
||||
},
|
||||
/** Ollama settings */
|
||||
ollama?: {
|
||||
/** connection URL */
|
||||
host: string;
|
||||
/** Default model */
|
||||
model: string;
|
||||
},
|
||||
/** Open AI settings */
|
||||
openAi?: {
|
||||
/** API Token */
|
||||
token: string;
|
||||
/** Default model */
|
||||
model: string;
|
||||
},
|
||||
/** Default provider & model */
|
||||
model: string | [string, string];
|
||||
} & Omit<LLMRequest, 'model'>;
|
||||
|
||||
export type LLMRequest = {
|
||||
/** System prompt */
|
||||
system?: string;
|
||||
@@ -70,9 +48,9 @@ export type LLMRequest = {
|
||||
/** Available tools */
|
||||
tools?: AiTool[];
|
||||
/** LLM model */
|
||||
model?: string | [string, string];
|
||||
model?: string;
|
||||
/** Stream response */
|
||||
stream?: (chunk: {text?: string, done?: true}) => any;
|
||||
stream?: (chunk: {text?: string, tool?: string, done?: true}) => any;
|
||||
/** Compress old messages in the chat to free up context */
|
||||
compress?: {
|
||||
/** Trigger chat compression once context exceeds the token count */
|
||||
@@ -83,14 +61,29 @@ export type LLMRequest = {
|
||||
}
|
||||
|
||||
export class LLM {
|
||||
private embedModel: any;
|
||||
private providers: {[key: string]: LLMProvider} = {};
|
||||
private embedWorker: Worker | null = null;
|
||||
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
|
||||
private embedId = 0;
|
||||
private models: {[model: string]: LLMProvider} = {};
|
||||
private defaultModel!: string;
|
||||
|
||||
constructor(public readonly ai: Ai) {
|
||||
this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
|
||||
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
|
||||
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
|
||||
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
|
||||
this.embedWorker.on('message', ({ id, embedding }) => {
|
||||
const pending = this.embedQueue.get(id);
|
||||
if (pending) {
|
||||
pending.resolve(embedding);
|
||||
this.embedQueue.delete(id);
|
||||
}
|
||||
});
|
||||
|
||||
if(!ai.options.llm?.models) return;
|
||||
Object.entries(ai.options.llm.models).forEach(([model, config]) => {
|
||||
if(!this.defaultModel) this.defaultModel = model;
|
||||
if(config.proto == 'anthropic') this.models[model] = new Anthropic(this.ai, config.token, model);
|
||||
else if(config.proto == 'ollama') this.models[model] = new OpenAi(this.ai, config.host, 'not-needed', model);
|
||||
else if(config.proto == 'openai') this.models[model] = new OpenAi(this.ai, config.host || null, config.token, model);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -100,17 +93,9 @@ export class LLM {
|
||||
* @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history
|
||||
*/
|
||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
||||
let model: any = [null, null];
|
||||
if(options.model) {
|
||||
if(typeof options.model == 'object') model = options.model;
|
||||
else model = [options.model, (<any>this.ai.options)[options.model]?.model];
|
||||
}
|
||||
if(!options.model || model[1] == null) {
|
||||
if(typeof this.ai.options.model == 'object') model = this.ai.options.model;
|
||||
else model = [this.ai.options.model, (<any>this.ai.options)[this.ai.options.model]?.model];
|
||||
}
|
||||
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
|
||||
return this.providers[model[0]].ask(message, {...options, model: model[1]});
|
||||
const m = options.model || this.defaultModel;
|
||||
if(!this.models[m]) throw new Error(`Model does not exist: ${m}`);
|
||||
return this.models[m].ask(message, options);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -148,49 +133,44 @@ export class LLM {
|
||||
return denominator === 0 ? 0 : dotProduct / denominator;
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
chunk(target: object | string, maxTokens = 500, overlapTokens = 50): string[] {
|
||||
const objString = (obj: any, path = ''): string[] => {
|
||||
if(obj === null || obj === undefined) return [];
|
||||
if(!obj) return [];
|
||||
return Object.entries(obj).flatMap(([key, value]) => {
|
||||
const p = path ? `${path}${isNaN(+key) ? `.${key}` : `[${key}]`}` : key;
|
||||
if(typeof value === 'object' && value !== null && !Array.isArray(value)) return objString(value, p);
|
||||
const valueStr = Array.isArray(value) ? value.join(', ') : String(value);
|
||||
return `${p}: ${valueStr}`;
|
||||
if(typeof value === 'object' && !Array.isArray(value)) return objString(value, p);
|
||||
return `${p}: ${Array.isArray(value) ? value.join(', ') : value}`;
|
||||
});
|
||||
};
|
||||
|
||||
const embed = async (text: string): Promise<number[]> => {
|
||||
const model = await this.embedModel;
|
||||
const output = await model(text, {pooling: 'mean', normalize: true});
|
||||
return Array.from(output.data);
|
||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||
const tokens = lines.flatMap(l => [...l.split(/\s+/).filter(Boolean), '\n']);
|
||||
const chunks: string[] = [];
|
||||
for(let i = 0; i < tokens.length;) {
|
||||
let text = '', j = i;
|
||||
while(j < tokens.length) {
|
||||
const next = text + (text ? ' ' : '') + tokens[j];
|
||||
if(this.estimateTokens(next.replace(/\s*\n\s*/g, '\n')) > maxTokens && text) break;
|
||||
text = next;
|
||||
j++;
|
||||
}
|
||||
const clean = text.replace(/\s*\n\s*/g, '\n').trim();
|
||||
if(clean) chunks.push(clean);
|
||||
i = Math.max(j - overlapTokens, j === i ? i + 1 : j);
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
const embed = (text: string): Promise<number[]> => {
|
||||
return new Promise((resolve, reject) => {
|
||||
const id = this.embedId++;
|
||||
this.embedQueue.set(id, { resolve, reject });
|
||||
this.embedWorker?.postMessage({ id, text });
|
||||
});
|
||||
};
|
||||
|
||||
// Tokenize
|
||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||
const tokens = lines.flatMap(line => [...line.split(/\s+/).filter(w => w.trim()), '\n']);
|
||||
|
||||
// Chunk
|
||||
const chunks: string[] = [];
|
||||
let start = 0;
|
||||
while (start < tokens.length) {
|
||||
let end = start;
|
||||
let text = '';
|
||||
// Build chunk
|
||||
while (end < tokens.length) {
|
||||
const nextToken = tokens[end];
|
||||
const testText = text + (text ? ' ' : '') + nextToken;
|
||||
const testTokens = this.estimateTokens(testText.replace(/\s*\n\s*/g, '\n'));
|
||||
if (testTokens > maxTokens && text) break;
|
||||
text = testText;
|
||||
end++;
|
||||
}
|
||||
// Save chunk
|
||||
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
|
||||
if(cleanText) chunks.push(cleanText);
|
||||
start = end - overlapTokens;
|
||||
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
|
||||
}
|
||||
|
||||
const chunks = this.chunk(target, maxTokens, overlapTokens);
|
||||
return Promise.all(chunks.map(async (text, index) => ({
|
||||
index,
|
||||
embedding: await embed(text),
|
||||
|
||||
122
src/ollama.ts
122
src/ollama.ts
@@ -1,122 +0,0 @@
|
||||
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {LLMMessage, LLMRequest} from './llm.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {Ollama as ollama} from 'ollama';
|
||||
|
||||
export class Ollama extends LLMProvider {
|
||||
client!: ollama;
|
||||
|
||||
constructor(public readonly ai: Ai, public host: string, public model: string) {
|
||||
super();
|
||||
this.client = new ollama({host});
|
||||
}
|
||||
|
||||
private toStandard(history: any[]): LLMMessage[] {
|
||||
for(let i = 0; i < history.length; i++) {
|
||||
if(history[i].role == 'assistant' && history[i].tool_calls) {
|
||||
if(history[i].content) delete history[i].tool_calls;
|
||||
else {
|
||||
history.splice(i, 1);
|
||||
i--;
|
||||
}
|
||||
} else if(history[i].role == 'tool') {
|
||||
const error = history[i].content.startsWith('{"error":');
|
||||
history[i] = {role: 'tool', name: history[i].tool_name, args: history[i].args, [error ? 'error' : 'content']: history[i].content, timestamp: history[i].timestamp};
|
||||
}
|
||||
if(!history[i]?.timestamp) history[i].timestamp = Date.now();
|
||||
}
|
||||
return history;
|
||||
}
|
||||
|
||||
private fromStandard(history: LLMMessage[]): any[] {
|
||||
return history.map((h: any) => {
|
||||
const {timestamp, ...rest} = h;
|
||||
if(h.role != 'tool') return rest;
|
||||
return {role: 'tool', tool_name: h.name, content: h.error || h.content}
|
||||
});
|
||||
}
|
||||
|
||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
||||
const controller = new AbortController();
|
||||
const response = new Promise<any>(async (res, rej) => {
|
||||
let system = options.system || this.ai.options.system;
|
||||
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
|
||||
if(history[0].roll == 'system') {
|
||||
if(!system) system = history.shift();
|
||||
else history.shift();
|
||||
}
|
||||
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min);
|
||||
if(options.system) history.unshift({role: 'system', content: system})
|
||||
|
||||
const tools = options.tools || this.ai.options.tools || [];
|
||||
const requestParams: any = {
|
||||
model: options.model || this.model,
|
||||
messages: history,
|
||||
stream: !!options.stream,
|
||||
signal: controller.signal,
|
||||
options: {
|
||||
temperature: options.temperature || this.ai.options.temperature || 0.7,
|
||||
num_predict: options.max_tokens || this.ai.options.max_tokens || 4096,
|
||||
},
|
||||
tools: tools.map(t => ({
|
||||
type: 'function',
|
||||
function: {
|
||||
name: t.name,
|
||||
description: t.description,
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties: t.args ? objectMap(t.args, (key, value) => ({...value, required: undefined})) : {},
|
||||
required: t.args ? Object.entries(t.args).filter(t => t[1].required).map(t => t[0]) : []
|
||||
}
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
let resp: any, isFirstMessage = true;
|
||||
do {
|
||||
resp = await this.client.chat(requestParams).catch(err => {
|
||||
err.message += `\n\nMessages:\n${JSON.stringify(history, null, 2)}`;
|
||||
throw err;
|
||||
});
|
||||
|
||||
if(options.stream) {
|
||||
if(!isFirstMessage) options.stream({text: '\n\n'});
|
||||
else isFirstMessage = false;
|
||||
resp.message = {role: 'assistant', content: '', tool_calls: []};
|
||||
for await (const chunk of resp) {
|
||||
if(controller.signal.aborted) break;
|
||||
if(chunk.message?.content) {
|
||||
resp.message.content += chunk.message.content;
|
||||
options.stream({text: chunk.message.content});
|
||||
}
|
||||
if(chunk.message?.tool_calls) resp.message.tool_calls = chunk.message.tool_calls;
|
||||
if(chunk.done) break;
|
||||
}
|
||||
}
|
||||
|
||||
if(resp.message?.tool_calls?.length && !controller.signal.aborted) {
|
||||
history.push(resp.message);
|
||||
const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => {
|
||||
const tool = tools.find(findByProp('name', toolCall.function.name));
|
||||
if(!tool) return {role: 'tool', tool_name: toolCall.function.name, content: '{"error": "Tool not found"}'};
|
||||
const args = typeof toolCall.function.arguments === 'string' ? JSONAttemptParse(toolCall.function.arguments, {}) : toolCall.function.arguments;
|
||||
try {
|
||||
const result = await tool.fn(args, this.ai);
|
||||
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize(result)};
|
||||
} catch (err: any) {
|
||||
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
|
||||
}
|
||||
}));
|
||||
history.push(...results);
|
||||
requestParams.messages = history;
|
||||
}
|
||||
} while (!controller.signal.aborted && resp.message?.tool_calls?.length);
|
||||
|
||||
if(options.stream) options.stream({done: true});
|
||||
res(this.toStandard([...history, {role: 'assistant', content: resp.message?.content}]));
|
||||
});
|
||||
|
||||
return Object.assign(response, {abort: () => controller.abort()});
|
||||
}
|
||||
}
|
||||
@@ -1,15 +1,18 @@
|
||||
import {OpenAI as openAI} from 'openai';
|
||||
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse, clean} from '@ztimson/utils';
|
||||
import {AbortablePromise, Ai} from './ai.ts';
|
||||
import {LLMMessage, LLMRequest} from './llm.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {LLMProvider} from './provider.ts';
|
||||
|
||||
export class OpenAi extends LLMProvider {
|
||||
client!: openAI;
|
||||
|
||||
constructor(public readonly ai: Ai, public readonly apiToken: string, public model: string) {
|
||||
constructor(public readonly ai: Ai, public readonly host: string | null, public readonly token: string, public model: string) {
|
||||
super();
|
||||
this.client = new openAI({apiKey: apiToken});
|
||||
this.client = new openAI(clean({
|
||||
baseURL: host,
|
||||
apiKey: token
|
||||
}));
|
||||
}
|
||||
|
||||
private toStandard(history: any[]): LLMMessage[] {
|
||||
@@ -64,16 +67,17 @@ export class OpenAi extends LLMProvider {
|
||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
||||
const controller = new AbortController();
|
||||
const response = new Promise<any>(async (res, rej) => {
|
||||
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
|
||||
let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
|
||||
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
|
||||
history = this.fromStandard(<any>history);
|
||||
|
||||
const tools = options.tools || this.ai.options.tools || [];
|
||||
const tools = options.tools || this.ai.options.llm?.tools || [];
|
||||
const requestParams: any = {
|
||||
model: options.model || this.model,
|
||||
messages: history,
|
||||
stream: !!options.stream,
|
||||
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
|
||||
temperature: options.temperature || this.ai.options.temperature || 0.7,
|
||||
max_tokens: options.max_tokens || this.ai.options.llm?.max_tokens || 4096,
|
||||
temperature: options.temperature || this.ai.options.llm?.temperature || 0.7,
|
||||
tools: tools.map(t => ({
|
||||
type: 'function',
|
||||
function: {
|
||||
@@ -116,6 +120,7 @@ export class OpenAi extends LLMProvider {
|
||||
history.push(resp.choices[0].message);
|
||||
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
|
||||
const tool = tools?.find(findByProp('name', toolCall.function.name));
|
||||
if(options.stream) options.stream({tool: toolCall.function.name});
|
||||
if(!tool) return {role: 'tool', tool_call_id: toolCall.id, content: '{"error": "Tool not found"}'};
|
||||
try {
|
||||
const args = JSONAttemptParse(toolCall.function.arguments, {});
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import {LLMMessage, LLMOptions, LLMRequest} from './llm.ts';
|
||||
|
||||
export type AbortablePromise<T> = Promise<T> & {abort: () => void};
|
||||
import {AbortablePromise} from './ai.ts';
|
||||
import {LLMMessage, LLMRequest} from './llm.ts';
|
||||
|
||||
export abstract class LLMProvider {
|
||||
abstract ask(message: string, options: LLMRequest): AbortablePromise<LLMMessage[]>;
|
||||
|
||||
41
src/tools.ts
41
src/tools.ts
@@ -1,3 +1,4 @@
|
||||
import * as cheerio from 'cheerio';
|
||||
import {$, $Sync} from '@ztimson/node-utils';
|
||||
import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
@@ -111,9 +112,43 @@ export const PythonTool: AiTool = {
|
||||
fn: async (args: {code: string}) => ({result: $Sync`python -c "${args.code}"`})
|
||||
}
|
||||
|
||||
export const SearchTool: AiTool = {
|
||||
name: 'search',
|
||||
description: 'Use a search engine to find relevant URLs, should be changed with fetch to scrape sources',
|
||||
export const ReadWebpageTool: AiTool = {
|
||||
name: 'read_webpage',
|
||||
description: 'Extract clean, structured content from a webpage. Use after web_search to read specific URLs',
|
||||
args: {
|
||||
url: {type: 'string', description: 'URL to extract content from', required: true},
|
||||
focus: {type: 'string', description: 'Optional: What aspect to focus on (e.g., "pricing", "features", "contact info")'}
|
||||
},
|
||||
fn: async (args: {url: string; focus?: string}) => {
|
||||
const html = await fetch(args.url, {headers: {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"}})
|
||||
.then(r => r.text()).catch(err => {throw new Error(`Failed to fetch: ${err.message}`)});
|
||||
|
||||
const $ = cheerio.load(html);
|
||||
$('script, style, nav, footer, header, aside, iframe, noscript, [role="navigation"], [role="banner"], .ad, .ads, .cookie, .popup').remove();
|
||||
const metadata = {
|
||||
title: $('meta[property="og:title"]').attr('content') || $('title').text() || '',
|
||||
description: $('meta[name="description"]').attr('content') || $('meta[property="og:description"]').attr('content') || '',
|
||||
};
|
||||
|
||||
let content = '';
|
||||
const contentSelectors = ['article', 'main', '[role="main"]', '.content', '.post', '.entry', 'body'];
|
||||
for (const selector of contentSelectors) {
|
||||
const el = $(selector).first();
|
||||
if (el.length && el.text().trim().length > 200) {
|
||||
content = el.text();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!content) content = $('body').text();
|
||||
content = content.replace(/\s+/g, ' ').trim().slice(0, 8000);
|
||||
|
||||
return {url: args.url, title: metadata.title.trim(), description: metadata.description.trim(), content, focus: args.focus};
|
||||
}
|
||||
}
|
||||
|
||||
export const WebSearchTool: AiTool = {
|
||||
name: 'web_search',
|
||||
description: 'Use duckduckgo (anonymous) to find find relevant online resources. Returns a list of URLs that works great with the `read_webpage` tool',
|
||||
args: {
|
||||
query: {type: 'string', description: 'Search string', required: true},
|
||||
length: {type: 'string', description: 'Number of results to return', default: 5},
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import {createWorker} from 'tesseract.js';
|
||||
import {Ai} from './ai.ts';
|
||||
import {AbortablePromise, Ai} from './ai.ts';
|
||||
|
||||
export class Vision {
|
||||
|
||||
@@ -8,18 +8,16 @@ export class Vision {
|
||||
/**
|
||||
* Convert image to text using Optical Character Recognition
|
||||
* @param {string} path Path to image
|
||||
* @returns {{abort: Function, response: Promise<string | null>}} Abort function & Promise of extracted text
|
||||
* @returns {AbortablePromise<string | null>} Promise of extracted text with abort method
|
||||
*/
|
||||
ocr(path: string): {abort: () => void, response: Promise<string | null>} {
|
||||
ocr(path: string): AbortablePromise<string | null> {
|
||||
let worker: any;
|
||||
return {
|
||||
abort: () => { worker?.terminate(); },
|
||||
response: new Promise(async res => {
|
||||
worker = await createWorker(this.ai.options.tesseract?.model || 'eng', 2, {cachePath: this.ai.options.path});
|
||||
const {data} = await worker.recognize(path);
|
||||
await worker.terminate();
|
||||
res(data.text.trim() || null);
|
||||
})
|
||||
}
|
||||
const p = new Promise<string | null>(async res => {
|
||||
worker = await createWorker(this.ai.options.tesseract?.model || 'eng', 2, {cachePath: this.ai.options.path});
|
||||
const {data} = await worker.recognize(path);
|
||||
await worker.terminate();
|
||||
res(data.text.trim() || null);
|
||||
});
|
||||
return Object.assign(p, {abort: () => worker?.terminate()});
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,12 +1,19 @@
|
||||
import {defineConfig} from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import {resolve} from 'path';
|
||||
|
||||
export default defineConfig({
|
||||
build: {
|
||||
lib: {
|
||||
entry: './src/index.ts',
|
||||
entry: {
|
||||
index: './src/index.ts',
|
||||
embedder: './src/embedder.ts',
|
||||
},
|
||||
name: 'utils',
|
||||
fileName: (format) => (format === 'es' ? 'index.mjs' : 'index.js'),
|
||||
fileName: (format, entryName) => {
|
||||
if (entryName === 'embedder') return 'embedder.js';
|
||||
return format === 'es' ? 'index.mjs' : 'index.js';
|
||||
},
|
||||
},
|
||||
ssr: true,
|
||||
emptyOutDir: true,
|
||||
|
||||
Reference in New Issue
Block a user