Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| ca5a2334bb | |||
| 3cd7b12f5f | |||
| bb6933f0d5 |
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@ztimson/ai-utils",
|
||||
"version": "0.2.0",
|
||||
"version": "0.2.2",
|
||||
"description": "AI Utility library",
|
||||
"author": "Zak Timson",
|
||||
"license": "MIT",
|
||||
|
||||
@@ -8,9 +8,9 @@ export type AiOptions = LLMOptions & {
|
||||
binary: string;
|
||||
/** Model: `ggml-base.en.bin` */
|
||||
model: string;
|
||||
/** Path to models */
|
||||
path: string;
|
||||
}
|
||||
/** Path to models */
|
||||
path: string;
|
||||
}
|
||||
|
||||
export class Ai {
|
||||
@@ -25,6 +25,7 @@ export class Ai {
|
||||
vision!: Vision;
|
||||
|
||||
constructor(public readonly options: AiOptions) {
|
||||
process.env.TRANSFORMERS_CACHE = options.path;
|
||||
this.audio = new Audio(this);
|
||||
this.language = new LLM(this);
|
||||
this.vision = new Vision(this);
|
||||
|
||||
@@ -48,7 +48,7 @@ export class Audio {
|
||||
async downloadAsrModel(model: string = this.whisperModel): Promise<string> {
|
||||
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
|
||||
if(!model.endsWith('.bin')) model += '.bin';
|
||||
const p = Path.join(this.ai.options.whisper.path, model);
|
||||
const p = Path.join(this.ai.options.path, model);
|
||||
if(await fs.stat(p).then(() => true).catch(() => false)) return p;
|
||||
if(!!this.downloads[model]) return this.downloads[model];
|
||||
this.downloads[model] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${model}`)
|
||||
|
||||
26
src/llm.ts
26
src/llm.ts
@@ -136,6 +136,18 @@ export class LLM {
|
||||
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
|
||||
}
|
||||
|
||||
cosineSimilarity(v1: number[], v2: number[]): number {
|
||||
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
||||
let dotProduct = 0, normA = 0, normB = 0;
|
||||
for (let i = 0; i < v1.length; i++) {
|
||||
dotProduct += v1[i] * v2[i];
|
||||
normA += v1[i] * v1[i];
|
||||
normB += v2[i] * v2[i];
|
||||
}
|
||||
const denominator = Math.sqrt(normA) * Math.sqrt(normB);
|
||||
return denominator === 0 ? 0 : dotProduct / denominator;
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
const objString = (obj: any, path = ''): string[] => {
|
||||
if(obj === null || obj === undefined) return [];
|
||||
@@ -205,24 +217,12 @@ export class LLM {
|
||||
*/
|
||||
fuzzyMatch(target: string, ...searchTerms: string[]) {
|
||||
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
|
||||
|
||||
const vector = (text: string, dimensions: number = 10): number[] => {
|
||||
return text.toLowerCase().split('').map((char, index) =>
|
||||
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
|
||||
}
|
||||
|
||||
const cosineSimilarity = (v1: number[], v2: number[]): number => {
|
||||
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
||||
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
|
||||
const dotProduct = tf.dot(tensor1, tensor2)
|
||||
const magnitude1 = tf.norm(tensor1)
|
||||
const magnitude2 = tf.norm(tensor2)
|
||||
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
|
||||
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
|
||||
}
|
||||
|
||||
const v = vector(target);
|
||||
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
|
||||
const similarities = searchTerms.map(t => vector(t)).map(refVector => this.cosineSimilarity(v, refVector))
|
||||
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
|
||||
}
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ export class Vision {
|
||||
return {
|
||||
abort: () => { worker?.terminate(); },
|
||||
response: new Promise(async res => {
|
||||
worker = await createWorker('eng');
|
||||
worker = await createWorker('eng', 1, {langPath: this.ai.options.path});
|
||||
const {data} = await worker.recognize(path);
|
||||
await worker.terminate();
|
||||
res(data.text.trim() || null);
|
||||
|
||||
Reference in New Issue
Block a user