Use one-off workers to process requests without blocking
This commit is contained in:
124
src/asr.ts
Normal file
124
src/asr.ts
Normal file
@@ -0,0 +1,124 @@
|
||||
import { pipeline } from '@xenova/transformers';
|
||||
import { parentPort } from 'worker_threads';
|
||||
import * as fs from 'node:fs';
|
||||
import wavefile from 'wavefile';
|
||||
import { spawn } from 'node:child_process';
|
||||
|
||||
let whisperPipeline: any;
|
||||
|
||||
export async function canDiarization(): Promise<boolean> {
|
||||
return new Promise((resolve) => {
|
||||
const proc = spawn('python3', ['-c', 'import pyannote.audio']);
|
||||
proc.on('close', (code: number) => resolve(code === 0));
|
||||
proc.on('error', () => resolve(false));
|
||||
});
|
||||
}
|
||||
|
||||
async function runDiarization(audioPath: string, torchHome: string): Promise<any[]> {
|
||||
const script = `
|
||||
import sys
|
||||
import json
|
||||
import os
|
||||
from pyannote.audio import Pipeline
|
||||
|
||||
os.environ['TORCH_HOME'] = "${torchHome}"
|
||||
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
|
||||
diarization = pipeline(sys.argv[1])
|
||||
|
||||
segments = []
|
||||
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
||||
segments.append({
|
||||
"start": turn.start,
|
||||
"end": turn.end,
|
||||
"speaker": speaker
|
||||
})
|
||||
|
||||
print(json.dumps(segments))
|
||||
`;
|
||||
|
||||
return new Promise((resolve, reject) => {
|
||||
let output = '';
|
||||
const proc = spawn('python3', ['-c', script, audioPath]);
|
||||
proc.stdout.on('data', (data: Buffer) => output += data.toString());
|
||||
proc.stderr.on('data', (data: Buffer) => console.error(data.toString()));
|
||||
proc.on('close', (code: number) => {
|
||||
if(code === 0) {
|
||||
try {
|
||||
resolve(JSON.parse(output));
|
||||
} catch (err) {
|
||||
reject(new Error('Failed to parse diarization output'));
|
||||
}
|
||||
} else {
|
||||
reject(new Error(`Python process exited with code ${code}`));
|
||||
}
|
||||
});
|
||||
proc.on('error', reject);
|
||||
});
|
||||
}
|
||||
|
||||
function combineSpeakerTranscript(chunks: any[], speakers: any[]): string {
|
||||
const speakerMap = new Map();
|
||||
let speakerCount = 0;
|
||||
speakers.forEach((seg: any) => {
|
||||
if(!speakerMap.has(seg.speaker)) speakerMap.set(seg.speaker, ++speakerCount);
|
||||
});
|
||||
|
||||
const lines: string[] = [];
|
||||
let currentSpeaker = -1;
|
||||
let currentText = '';
|
||||
chunks.forEach((chunk: any) => {
|
||||
const time = chunk.timestamp[0];
|
||||
const speaker = speakers.find((s: any) => time >= s.start && time <= s.end);
|
||||
const speakerNum = speaker ? speakerMap.get(speaker.speaker) : 1;
|
||||
if (speakerNum !== currentSpeaker) {
|
||||
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
|
||||
currentSpeaker = speakerNum;
|
||||
currentText = chunk.text;
|
||||
} else {
|
||||
currentText += chunk.text;
|
||||
}
|
||||
});
|
||||
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
|
||||
return lines.join('\n');
|
||||
}
|
||||
|
||||
parentPort?.on('message', async ({ path, model, speaker, torchHome }) => {
|
||||
try {
|
||||
if(!whisperPipeline) whisperPipeline = await pipeline('automatic-speech-recognition', `Xenova/${model}`, {cache_dir: torchHome, quantized: true});
|
||||
|
||||
// Prepare audio file (convert to mono channel wave)
|
||||
const wav = new wavefile.WaveFile(fs.readFileSync(path));
|
||||
wav.toBitDepth('32f');
|
||||
wav.toSampleRate(16000);
|
||||
const samples = wav.getSamples();
|
||||
let buffer;
|
||||
if(Array.isArray(samples)) { // stereo to mono - average the channels
|
||||
const left = samples[0];
|
||||
const right = samples[1];
|
||||
buffer = new Float32Array(left.length);
|
||||
for (let i = 0; i < left.length; i++) buffer[i] = (left[i] + right[i]) / 2;
|
||||
} else {
|
||||
buffer = samples;
|
||||
}
|
||||
|
||||
// Transcribe
|
||||
const transcriptResult = await whisperPipeline(buffer, {return_timestamps: speaker ? 'word' : false});
|
||||
if(!speaker) {
|
||||
parentPort?.postMessage({ text: transcriptResult.text?.trim() || null });
|
||||
return;
|
||||
}
|
||||
|
||||
// Speaker Diarization
|
||||
const hasDiarization = await canDiarization();
|
||||
if(!hasDiarization) {
|
||||
parentPort?.postMessage({ text: transcriptResult.text?.trim() || null, warning: 'Speaker diarization unavailable' });
|
||||
return;
|
||||
}
|
||||
|
||||
const speakers = await runDiarization(path, torchHome);
|
||||
const combined = combineSpeakerTranscript(transcriptResult.chunks || [], speakers);
|
||||
parentPort?.postMessage({ text: combined });
|
||||
} catch (err) {
|
||||
parentPort?.postMessage({ error: (err as Error).message });
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user