Use one-off workers to process requests without blocking
All checks were successful
Publish Library / Build NPM Project (push) Successful in 27s
Publish Library / Tag Version (push) Successful in 5s

This commit is contained in:
2026-02-12 19:45:17 -05:00
parent 3ed206923f
commit ad1ee48763
6 changed files with 168 additions and 140 deletions

View File

@@ -1,6 +1,6 @@
{
"name": "@ztimson/ai-utils",
"version": "0.6.5",
"version": "0.6.6",
"description": "AI Utility library",
"author": "Zak Timson",
"license": "MIT",

124
src/asr.ts Normal file
View File

@@ -0,0 +1,124 @@
import { pipeline } from '@xenova/transformers';
import { parentPort } from 'worker_threads';
import * as fs from 'node:fs';
import wavefile from 'wavefile';
import { spawn } from 'node:child_process';
let whisperPipeline: any;
export async function canDiarization(): Promise<boolean> {
return new Promise((resolve) => {
const proc = spawn('python3', ['-c', 'import pyannote.audio']);
proc.on('close', (code: number) => resolve(code === 0));
proc.on('error', () => resolve(false));
});
}
async function runDiarization(audioPath: string, torchHome: string): Promise<any[]> {
const script = `
import sys
import json
import os
from pyannote.audio import Pipeline
os.environ['TORCH_HOME'] = "${torchHome}"
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
diarization = pipeline(sys.argv[1])
segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
segments.append({
"start": turn.start,
"end": turn.end,
"speaker": speaker
})
print(json.dumps(segments))
`;
return new Promise((resolve, reject) => {
let output = '';
const proc = spawn('python3', ['-c', script, audioPath]);
proc.stdout.on('data', (data: Buffer) => output += data.toString());
proc.stderr.on('data', (data: Buffer) => console.error(data.toString()));
proc.on('close', (code: number) => {
if(code === 0) {
try {
resolve(JSON.parse(output));
} catch (err) {
reject(new Error('Failed to parse diarization output'));
}
} else {
reject(new Error(`Python process exited with code ${code}`));
}
});
proc.on('error', reject);
});
}
function combineSpeakerTranscript(chunks: any[], speakers: any[]): string {
const speakerMap = new Map();
let speakerCount = 0;
speakers.forEach((seg: any) => {
if(!speakerMap.has(seg.speaker)) speakerMap.set(seg.speaker, ++speakerCount);
});
const lines: string[] = [];
let currentSpeaker = -1;
let currentText = '';
chunks.forEach((chunk: any) => {
const time = chunk.timestamp[0];
const speaker = speakers.find((s: any) => time >= s.start && time <= s.end);
const speakerNum = speaker ? speakerMap.get(speaker.speaker) : 1;
if (speakerNum !== currentSpeaker) {
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
currentSpeaker = speakerNum;
currentText = chunk.text;
} else {
currentText += chunk.text;
}
});
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
return lines.join('\n');
}
parentPort?.on('message', async ({ path, model, speaker, torchHome }) => {
try {
if(!whisperPipeline) whisperPipeline = await pipeline('automatic-speech-recognition', `Xenova/${model}`, {cache_dir: torchHome, quantized: true});
// Prepare audio file (convert to mono channel wave)
const wav = new wavefile.WaveFile(fs.readFileSync(path));
wav.toBitDepth('32f');
wav.toSampleRate(16000);
const samples = wav.getSamples();
let buffer;
if(Array.isArray(samples)) { // stereo to mono - average the channels
const left = samples[0];
const right = samples[1];
buffer = new Float32Array(left.length);
for (let i = 0; i < left.length; i++) buffer[i] = (left[i] + right[i]) / 2;
} else {
buffer = samples;
}
// Transcribe
const transcriptResult = await whisperPipeline(buffer, {return_timestamps: speaker ? 'word' : false});
if(!speaker) {
parentPort?.postMessage({ text: transcriptResult.text?.trim() || null });
return;
}
// Speaker Diarization
const hasDiarization = await canDiarization();
if(!hasDiarization) {
parentPort?.postMessage({ text: transcriptResult.text?.trim() || null, warning: 'Speaker diarization unavailable' });
return;
}
const speakers = await runDiarization(path, torchHome);
const combined = combineSpeakerTranscript(transcriptResult.chunks || [], speakers);
parentPort?.postMessage({ text: combined });
} catch (err) {
parentPort?.postMessage({ error: (err as Error).message });
}
});

View File

@@ -1,133 +1,40 @@
import {spawn} from 'node:child_process';
import {pipeline} from '@xenova/transformers';
import * as fs from 'node:fs';
import {Worker} from 'worker_threads';
import path from 'node:path';
import {AbortablePromise, Ai} from './ai.ts';
import wavefile from 'wavefile';
import {canDiarization} from './asr.ts';
export class Audio {
private whisperPipeline: any;
constructor(private ai: Ai) {}
constructor(private ai: Ai) { }
private combineSpeakerTranscript(chunks: any[], speakers: any[]): string {
const speakerMap = new Map();
let speakerCount = 0;
speakers.forEach((seg: any) => {
if(!speakerMap.has(seg.speaker)) speakerMap.set(seg.speaker, ++speakerCount);
});
const lines: string[] = [];
let currentSpeaker = -1;
let currentText = '';
chunks.forEach((chunk: any) => {
const time = chunk.timestamp[0];
const speaker = speakers.find((s: any) => time >= s.start && time <= s.end);
const speakerNum = speaker ? speakerMap.get(speaker.speaker) : 1;
if (speakerNum !== currentSpeaker) {
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
currentSpeaker = speakerNum;
currentText = chunk.text;
} else {
currentText += chunk.text;
}
});
if(currentText) lines.push(`[speaker ${currentSpeaker}]: ${currentText.trim()}`);
return lines.join('\n');
}
async canDiarization(): Promise<boolean> {
return new Promise((resolve) => {
const proc = spawn('python3', ['-c', 'import pyannote.audio']);
proc.on('close', (code: number) => resolve(code === 0));
proc.on('error', () => resolve(false));
});
}
private async runDiarization(audioPath: string): Promise<any[]> {
if(!await this.canDiarization()) throw new Error('Pyannote is not installed: pip install pyannote.audio');
const script = `
import sys
import json
from pyannote.audio import Pipeline
os.environ['TORCH_HOME'] = "${this.ai.options.path}"
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1")
diarization = pipeline(sys.argv[1])
segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
segments.append({
"start": turn.start,
"end": turn.end,
"speaker": speaker
})
print(json.dumps(segments))
`;
return new Promise((resolve, reject) => {
let output = '';
const proc = spawn('python3', ['-c', script, audioPath]);
proc.stdout.on('data', (data: Buffer) => output += data.toString());
proc.stderr.on('data', (data: Buffer) => console.error(data.toString()));
proc.on('close', (code: number) => {
if(code === 0) {
try {
resolve(JSON.parse(output));
} catch (err) {
reject(new Error('Failed to parse diarization output'));
}
} else {
reject(new Error(`Python process exited with code ${code}`));
}
});
proc.on('error', reject);
});
}
asr(path: string, options: { model?: string; speaker?: boolean } = {}): AbortablePromise<string | null> {
asr(filepath: string, options: { model?: string; speaker?: boolean } = {}): AbortablePromise<string | null> {
const { model = this.ai.options.asr || 'whisper-base', speaker = false } = options;
let aborted = false;
const abort = () => { aborted = true; };
const p = new Promise<string | null>(async (resolve, reject) => {
try {
if(aborted) return resolve(null);
if(!this.whisperPipeline) this.whisperPipeline = await pipeline('automatic-speech-recognition', `Xenova/${model}`, { cache_dir: this.ai.options.path, quantized: true });
// Prepare audio file (convert to mono channel wave)
if(aborted) return resolve(null);
const wav = new wavefile.WaveFile(fs.readFileSync(path));
wav.toBitDepth('32f');
wav.toSampleRate(16000);
const samples = wav.getSamples();
let buffer;
if(Array.isArray(samples)) { // stereo to mono - average the channels
const left = samples[0];
const right = samples[1];
buffer = new Float32Array(left.length);
for (let i = 0; i < left.length; i++) buffer[i] = (left[i] + right[i]) / 2;
} else {
buffer = samples;
const p = new Promise<string | null>((resolve, reject) => {
const worker = new Worker(path.join(import.meta.dirname, 'asr.js'));
const handleMessage = ({ text, warning, error }: any) => {
worker.terminate();
if(aborted) return;
if(error) reject(new Error(error));
else {
if(warning) console.warn(warning);
resolve(text);
}
// Transcribe
if(aborted) return resolve(null);
const transcriptResult = await this.whisperPipeline(buffer, {return_timestamps: speaker ? 'word' : false});
if(!speaker) return resolve(transcriptResult.text?.trim() || null);
// Speaker Diarization
if(aborted) return resolve(null);
const speakers = await this.runDiarization(path);
if(aborted) return resolve(null);
const combined = this.combineSpeakerTranscript(transcriptResult.chunks || [], speakers);
resolve(combined);
} catch (err) {
reject(err);
}
};
const handleError = (err: Error) => {
worker.terminate();
if(!aborted) reject(err);
};
worker.on('message', handleMessage);
worker.on('error', handleError);
worker.on('exit', (code) => {
if(code !== 0 && !aborted) reject(new Error(`Worker exited with code ${code}`));
});
worker.postMessage({path: filepath, model, speaker, torchHome: this.ai.options.path,});
});
return Object.assign(p, { abort });
}
canDiarization = canDiarization;
}

View File

@@ -1,5 +1,6 @@
export * from './ai';
export * from './antrhopic';
export * from './asr';
export * from './audio';
export * from './embedder'
export * from './llm';

View File

@@ -75,22 +75,10 @@ export type LLMRequest = {
}
class LLM {
private embedWorker: Worker | null = null;
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
private embedId = 0;
private models: {[model: string]: LLMProvider} = {};
private defaultModel!: string;
constructor(public readonly ai: Ai) {
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
this.embedWorker.on('message', ({ id, embedding }) => {
const pending = this.embedQueue.get(id);
if (pending) {
pending.resolve(embedding);
this.embedQueue.delete(id);
}
});
if(!ai.options.llm?.models) return;
Object.entries(ai.options.llm.models).forEach(([model, config]) => {
if(!this.defaultModel) this.defaultModel = model;
@@ -269,14 +257,21 @@ class LLM {
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
const embed = (text: string): Promise<number[]> => {
return new Promise((resolve, reject) => {
const id = this.embedId++;
this.embedQueue.set(id, { resolve, reject });
this.embedWorker?.postMessage({
id,
text,
model: this.ai.options?.embedder || 'bge-small-en-v1.5',
path: this.ai.options.path
const worker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
const handleMessage = ({ embedding }: any) => {
worker.terminate();
resolve(embedding);
};
const handleError = (err: Error) => {
worker.terminate();
reject(err);
};
worker.on('message', handleMessage);
worker.on('error', handleError);
worker.on('exit', (code) => {
if(code !== 0) reject(new Error(`Worker exited with code ${code}`));
});
worker.postMessage({text, model: this.ai.options?.embedder || 'bge-small-en-v1.5', path: this.ai.options.path});
});
};
const chunks = this.chunk(target, maxTokens, overlapTokens);

View File

@@ -6,6 +6,7 @@ export default defineConfig({
build: {
lib: {
entry: {
asr: './src/asr.ts',
index: './src/index.ts',
embedder: './src/embedder.ts',
},