168 lines
5.5 KiB
TypeScript
168 lines
5.5 KiB
TypeScript
import {JSONAttemptParse} from '@ztimson/utils';
|
|
import {Ai} from './ai.ts';
|
|
import {Anthropic} from './antrhopic.ts';
|
|
import {Ollama} from './ollama.ts';
|
|
import {OpenAi} from './open-ai.ts';
|
|
import {AbortablePromise, LLMProvider} from './provider.ts';
|
|
import {AiTool} from './tools.ts';
|
|
|
|
export type LLMMessage = {
|
|
/** Message originator */
|
|
role: 'assistant' | 'system' | 'user';
|
|
/** Message content */
|
|
content: string | any;
|
|
} | {
|
|
/** Tool call */
|
|
role: 'tool';
|
|
/** Unique ID for call */
|
|
id: string;
|
|
/** Tool that was run */
|
|
name: string;
|
|
/** Tool arguments */
|
|
args: any;
|
|
/** Tool result */
|
|
content: undefined | string;
|
|
/** Tool error */
|
|
error: undefined | string;
|
|
}
|
|
|
|
export type LLMOptions = {
|
|
/** Anthropic settings */
|
|
anthropic?: {
|
|
/** API Token */
|
|
token: string;
|
|
/** Default model */
|
|
model: string;
|
|
},
|
|
/** Ollama settings */
|
|
ollama?: {
|
|
/** connection URL */
|
|
host: string;
|
|
/** Default model */
|
|
model: string;
|
|
},
|
|
/** Open AI settings */
|
|
openAi?: {
|
|
/** API Token */
|
|
token: string;
|
|
/** Default model */
|
|
model: string;
|
|
},
|
|
/** Default provider & model */
|
|
model: string | [string, string];
|
|
} & Omit<LLMRequest, 'model'>;
|
|
|
|
export type LLMRequest = {
|
|
/** System prompt */
|
|
system?: string;
|
|
/** Message history */
|
|
history?: LLMMessage[];
|
|
/** Max tokens for request */
|
|
max_tokens?: number;
|
|
/** 0 = Rigid Logic, 1 = Balanced, 2 = Hyper Creative **/
|
|
temperature?: number;
|
|
/** Available tools */
|
|
tools?: AiTool[];
|
|
/** LLM model */
|
|
model?: string | [string, string];
|
|
/** Stream response */
|
|
stream?: (chunk: {text?: string, done?: true}) => any;
|
|
/** Compress old messages in the chat to free up context */
|
|
compress?: {
|
|
/** Trigger chat compression once context exceeds the token count */
|
|
max: number;
|
|
/** Compress chat until context size smaller than */
|
|
min: number
|
|
}
|
|
}
|
|
|
|
export class LLM {
|
|
private providers: {[key: string]: LLMProvider} = {};
|
|
|
|
constructor(public readonly ai: Ai, public readonly options: LLMOptions) {
|
|
if(options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, options.anthropic.token, options.anthropic.model);
|
|
if(options.ollama?.host) this.providers.ollama = new Ollama(this.ai, options.ollama.host, options.ollama.model);
|
|
if(options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, options.openAi.token, options.openAi.model);
|
|
}
|
|
|
|
/**
|
|
* Chat with LLM
|
|
* @param {string} message Question
|
|
* @param {LLMRequest} options Configuration options and chat history
|
|
* @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history
|
|
*/
|
|
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
|
let model: any = [null, null];
|
|
if(options.model) {
|
|
if(typeof options.model == 'object') model = options.model;
|
|
else model = [options.model, (<any>this.options)[options.model]?.model];
|
|
}
|
|
if(!options.model || model[1] == null) {
|
|
if(typeof this.options.model == 'object') model = this.options.model;
|
|
else model = [this.options.model, (<any>this.options)[this.options.model]?.model];
|
|
}
|
|
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
|
|
return this.providers[model[0]].ask(message, {...options, model: model[1]});
|
|
}
|
|
|
|
/**
|
|
* Compress chat history to reduce context size
|
|
* @param {LLMMessage[]} history Chatlog that will be compressed
|
|
* @param max Trigger compression once context is larger than max
|
|
* @param min Summarize until context size is less than min
|
|
* @param {LLMRequest} options LLM options
|
|
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
|
|
*/
|
|
async compress(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
|
|
if(this.estimateTokens(history) < max) return history;
|
|
let keep = 0, tokens = 0;
|
|
for(let m of history.toReversed()) {
|
|
tokens += this.estimateTokens(m.content);
|
|
if(tokens < min) keep++;
|
|
else break;
|
|
}
|
|
if(history.length <= keep) return history;
|
|
const recent = keep == 0 ? [] : history.slice(-keep),
|
|
process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user');
|
|
const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options);
|
|
return [{role: 'assistant', content: `Conversation Summary: ${summary}`}, ...recent];
|
|
}
|
|
|
|
/**
|
|
* Estimate variable as tokens
|
|
* @param history Object to size
|
|
* @returns {number} Rough token count
|
|
*/
|
|
estimateTokens(history: any): number {
|
|
const text = JSON.stringify(history);
|
|
return Math.ceil((text.length / 4) * 1.2);
|
|
}
|
|
|
|
/**
|
|
* Ask a question with JSON response
|
|
* @param {string} message Question
|
|
* @param {LLMRequest} options Configuration options and chat history
|
|
* @returns {Promise<{} | {} | RegExpExecArray | null>}
|
|
*/
|
|
async json(message: string, options?: LLMRequest) {
|
|
let resp = await this.ask(message, {
|
|
system: 'Respond using a JSON blob',
|
|
...options
|
|
});
|
|
if(!resp?.[0]?.content) return {};
|
|
return JSONAttemptParse(new RegExp('\{[\s\S]*\}').exec(resp[0].content), {});
|
|
}
|
|
|
|
/**
|
|
* Create a summary of some text
|
|
* @param {string} text Text to summarize
|
|
* @param {number} tokens Max number of tokens
|
|
* @param options LLM request options
|
|
* @returns {Promise<string>} Summary
|
|
*/
|
|
summarize(text: string, tokens: number, options?: LLMRequest): Promise<string | null> {
|
|
return this.ask(text, {system: `Generate a brief summary <= ${tokens} tokens. Output nothing else`, temperature: 0.3, ...options})
|
|
.then(history => <string>history.pop()?.content || null);
|
|
}
|
|
}
|