Files
ai-utils/src/ai.ts
ztimson 07f9593b6a
All checks were successful
Publish Library / Build NPM Project (push) Successful in 29s
Publish Library / Tag Version (push) Successful in 7s
ASR debugging
2025-12-13 22:02:13 -05:00

126 lines
5.0 KiB
TypeScript

import {$} from '@ztimson/node-utils';
import {createWorker} from 'tesseract.js';
import {LLM, LLMOptions} from './llm';
import fs from 'node:fs/promises';
import Path from 'node:path';
import * as tf from '@tensorflow/tfjs';
export type AiOptions = LLMOptions & {
whisper?: {
/** Whisper binary location */
binary: string;
/** Model */
model: WhisperModel;
/** Path to models */
path: string;
/** Path to storage location for temporary files */
temp?: string;
}
}
export type WhisperModel = 'tiny' | 'base' | 'small' | 'medium' | 'large';
export class Ai {
private downloads: {[key: string]: Promise<string>} = {};
private whisperModel!: string;
/** Large Language Models */
llm!: LLM;
constructor(public readonly options: AiOptions) {
this.llm = new LLM(this, options);
if(this.options.whisper?.binary) {
this.whisperModel = Path.join(<string>this.options.whisper?.path, this.options.whisper?.model + this.options.whisper?.model.endsWith('.bin') ? '' : '.bin');
this.downloadAsrModel();
}
}
/**
* Convert audio to text using Auditory Speech Recognition
* @param {string} path Path to audio
* @param model Whisper model
* @returns {Promise<any>} Extracted text
*/
async asr(path: string, model?: WhisperModel): Promise<string | null> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
await this.downloadAsrModel(model);
const name = Math.random().toString(36).substring(2, 10) + '-' + path.split('/').pop() + '.txt';
const output = Path.join(this.options.whisper.temp || '/tmp', name);
console.log(`rm -f ${output} && ${this.options.whisper.binary} -nt -np -m ${model ? Path.join(this.options.whisper.path, model) : this.whisperModel} -f ${path} -otxt -of ${output}`);
await $`rm -f ${output} && ${this.options.whisper.binary} -nt -np -m ${model ? Path.join(this.options.whisper.path, model) : this.whisperModel} -f ${path} -otxt -of ${output}`;
return fs.readFile(output, 'utf-8').then(text => text?.trim() || null)
.finally(() => fs.rm(output, {force: true}).catch(() => {}));
}
/**
* Downloads the specified Whisper model if it is not already present locally.
*
* @param {string} model Whisper model that will be downloaded
* @return {Promise<string>} Absolute path to model file, resolves once downloaded
*/
async downloadAsrModel(model?: string): Promise<string> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
let m;
if(model) m = model?.endsWith('.bin') ? model : model + '.bin';
else m = <string>this.whisperModel.split('/').at(-1);
const p = Path.join(this.options.whisper.path, m);
if(await fs.stat(p).then(() => true).catch(() => false)) return p;
if(!!this.downloads[m]) return this.downloads[m];
this.downloads[m] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${m}`)
.then(resp => resp.arrayBuffer())
.then(arr => Buffer.from(arr)).then(async buffer => {
await fs.writeFile(Path.join((<any>this.options.whisper).path, m), buffer);
delete this.downloads[m];
return p;
});
return this.downloads[m];
}
/**
* Convert image to text using Optical Character Recognition
* @param {string} path Path to image
* @returns {{abort: Function, response: Promise<string | null>}} Abort function & Promise of extracted text
*/
ocr(path: string): {abort: () => void, response: Promise<string | null>} {
let worker: any;
return {
abort: () => { worker?.terminate(); },
response: new Promise(async res => {
worker = await createWorker('eng');
const {data} = await worker.recognize(path);
await worker.terminate();
res(data.text.trim() || null);
})
}
}
/**
* Compare the difference between two strings using tensor math
* @param target Text that will checked
* @param {string} searchTerms Multiple search terms to check against target
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
*/
semanticSimilarity(target: string, ...searchTerms: string[]) {
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
const vector = (text: string, dimensions: number = 10): number[] => {
return text.toLowerCase().split('').map((char, index) =>
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
}
const cosineSimilarity = (v1: number[], v2: number[]): number => {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
const dotProduct = tf.dot(tensor1, tensor2)
const magnitude1 = tf.norm(tensor1)
const magnitude2 = tf.norm(tensor2)
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
}
const v = vector(target);
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
}
}