import {pipeline} from '@xenova/transformers'; import {JSONAttemptParse} from '@ztimson/utils'; import {Ai} from './ai.ts'; import {Anthropic} from './antrhopic.ts'; import {Ollama} from './ollama.ts'; import {OpenAi} from './open-ai.ts'; import {AbortablePromise, LLMProvider} from './provider.ts'; import {AiTool} from './tools.ts'; import * as tf from '@tensorflow/tfjs'; export type LLMMessage = { /** Message originator */ role: 'assistant' | 'system' | 'user'; /** Message content */ content: string | any; /** Timestamp */ timestamp?: number; } | { /** Tool call */ role: 'tool'; /** Unique ID for call */ id: string; /** Tool that was run */ name: string; /** Tool arguments */ args: any; /** Tool result */ content: undefined | string; /** Tool error */ error: undefined | string; /** Timestamp */ timestamp?: number; } export type LLMOptions = { /** Anthropic settings */ anthropic?: { /** API Token */ token: string; /** Default model */ model: string; }, /** Ollama settings */ ollama?: { /** connection URL */ host: string; /** Default model */ model: string; }, /** Open AI settings */ openAi?: { /** API Token */ token: string; /** Default model */ model: string; }, /** Default provider & model */ model: string | [string, string]; } & Omit; export type LLMRequest = { /** System prompt */ system?: string; /** Message history */ history?: LLMMessage[]; /** Max tokens for request */ max_tokens?: number; /** 0 = Rigid Logic, 1 = Balanced, 2 = Hyper Creative **/ temperature?: number; /** Available tools */ tools?: AiTool[]; /** LLM model */ model?: string | [string, string]; /** Stream response */ stream?: (chunk: {text?: string, done?: true}) => any; /** Compress old messages in the chat to free up context */ compress?: { /** Trigger chat compression once context exceeds the token count */ max: number; /** Compress chat until context size smaller than */ min: number } } export class LLM { private embedModel: any; private providers: {[key: string]: LLMProvider} = {}; constructor(public readonly ai: Ai) { this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'); if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model); if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model); if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model); } /** * Chat with LLM * @param {string} message Question * @param {LLMRequest} options Configuration options and chat history * @returns {{abort: () => void, response: Promise}} Function to abort response and chat history */ ask(message: string, options: LLMRequest = {}): AbortablePromise { let model: any = [null, null]; if(options.model) { if(typeof options.model == 'object') model = options.model; else model = [options.model, (this.ai.options)[options.model]?.model]; } if(!options.model || model[1] == null) { if(typeof this.ai.options.model == 'object') model = this.ai.options.model; else model = [this.ai.options.model, (this.ai.options)[this.ai.options.model]?.model]; } if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`); return this.providers[model[0]].ask(message, {...options, model: model[1]}); } /** * Compress chat history to reduce context size * @param {LLMMessage[]} history Chatlog that will be compressed * @param max Trigger compression once context is larger than max * @param min Summarize until context size is less than min * @param {LLMRequest} options LLM options * @returns {Promise} New chat history will summary at index 0 */ async compressHistory(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise { if(this.estimateTokens(history) < max) return history; let keep = 0, tokens = 0; for(let m of history.toReversed()) { tokens += this.estimateTokens(m.content); if(tokens < min) keep++; else break; } if(history.length <= keep) return history; const recent = keep == 0 ? [] : history.slice(-keep), process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user'); const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options); return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent]; } embedding(target: object | string, maxTokens = 500, overlapTokens = 50) { const objString = (obj: any, path = ''): string[] => { if(obj === null || obj === undefined) return []; return Object.entries(obj).flatMap(([key, value]) => { const p = path ? `${path}${isNaN(+key) ? `.${key}` : `[${key}]`}` : key; if(typeof value === 'object' && value !== null && !Array.isArray(value)) return objString(value, p); const valueStr = Array.isArray(value) ? value.join(', ') : String(value); return `${p}: ${valueStr}`; }); }; const embed = async (text: string): Promise => { const model = await this.embedModel; const output = await model(text, {pooling: 'mean', normalize: true}); return Array.from(output.data); }; // Tokenize const lines = typeof target === 'object' ? objString(target) : target.split('\n'); const tokens = lines.flatMap(line => [...line.split(/\s+/).filter(w => w.trim()), '\n']); // Chunk const chunks: string[] = []; let start = 0; while (start < tokens.length) { let end = start; let text = ''; // Build chunk while (end < tokens.length) { const nextToken = tokens[end]; const testText = text + (text ? ' ' : '') + nextToken; const testTokens = this.estimateTokens(testText.replace(/\s*\n\s*/g, '\n')); if (testTokens > maxTokens && text) break; text = testText; end++; } // Save chunk const cleanText = text.replace(/\s*\n\s*/g, '\n').trim(); if(cleanText) chunks.push(cleanText); start = end - overlapTokens; if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop } return Promise.all(chunks.map(async (text, index) => ({ index, embedding: await embed(text), text, tokens: this.estimateTokens(text), }))); } /** * Estimate variable as tokens * @param history Object to size * @returns {number} Rough token count */ estimateTokens(history: any): number { const text = JSON.stringify(history); return Math.ceil((text.length / 4) * 1.2); } /** * Compare the difference between two strings using tensor math * @param target Text that will checked * @param {string} searchTerms Multiple search terms to check against target * @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical */ fuzzyMatch(target: string, ...searchTerms: string[]) { if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare'); const vector = (text: string, dimensions: number = 10): number[] => { return text.toLowerCase().split('').map((char, index) => (char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions); } const cosineSimilarity = (v1: number[], v2: number[]): number => { if (v1.length !== v2.length) throw new Error('Vectors must be same length'); const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2) const dotProduct = tf.dot(tensor1, tensor2) const magnitude1 = tf.norm(tensor1) const magnitude2 = tf.norm(tensor2) if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0 return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0]) } const v = vector(target); const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector)) return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities} } /** * Ask a question with JSON response * @param {string} message Question * @param {LLMRequest} options Configuration options and chat history * @returns {Promise<{} | {} | RegExpExecArray | null>} */ async json(message: string, options?: LLMRequest) { let resp = await this.ask(message, { system: 'Respond using a JSON blob', ...options }); if(!resp?.[0]?.content) return {}; return JSONAttemptParse(new RegExp('\{[\s\S]*\}').exec(resp[0].content), {}); } /** * Create a summary of some text * @param {string} text Text to summarize * @param {number} tokens Max number of tokens * @param options LLM request options * @returns {Promise} Summary */ summarize(text: string, tokens: number, options?: LLMRequest): Promise { return this.ask(text, {system: `Generate a brief summary <= ${tokens} tokens. Output nothing else`, temperature: 0.3, ...options}) .then(history => history.pop()?.content || null); } }