Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| d5bf1ec47e | |||
| cb60a0b0c5 | |||
| 1c59379c7d |
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@ztimson/ai-utils",
|
||||
"version": "0.2.4",
|
||||
"version": "0.2.7",
|
||||
"description": "AI Utility library",
|
||||
"author": "Zak Timson",
|
||||
"license": "MIT",
|
||||
|
||||
10
src/ai.ts
10
src/ai.ts
@@ -4,14 +4,20 @@ import { Audio } from './audio.ts';
|
||||
import {Vision} from './vision.ts';
|
||||
|
||||
export type AiOptions = LLMOptions & {
|
||||
/** Path to models */
|
||||
path?: string;
|
||||
/** Whisper ASR configuration */
|
||||
whisper?: {
|
||||
/** Whisper binary location */
|
||||
binary: string;
|
||||
/** Model: `ggml-base.en.bin` */
|
||||
model: string;
|
||||
}
|
||||
/** Path to models */
|
||||
path?: string;
|
||||
/** Tesseract OCR configuration */
|
||||
tesseract?: {
|
||||
/** Model: eng, eng_best, eng_fast */
|
||||
model?: string;
|
||||
}
|
||||
}
|
||||
|
||||
export class Ai {
|
||||
|
||||
11
src/embedder.ts
Normal file
11
src/embedder.ts
Normal file
@@ -0,0 +1,11 @@
|
||||
import { pipeline } from '@xenova/transformers';
|
||||
import { parentPort } from 'worker_threads';
|
||||
|
||||
let model: any;
|
||||
|
||||
parentPort?.on('message', async ({ id, text }) => {
|
||||
if(!model) model = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
const output = await model(text, { pooling: 'mean', normalize: true });
|
||||
const embedding = Array.from(output.data);
|
||||
parentPort?.postMessage({ id, embedding });
|
||||
});
|
||||
85
src/llm.ts
85
src/llm.ts
@@ -1,4 +1,3 @@
|
||||
import {pipeline} from '@xenova/transformers';
|
||||
import {JSONAttemptParse} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {Anthropic} from './antrhopic.ts';
|
||||
@@ -6,7 +5,9 @@ import {Ollama} from './ollama.ts';
|
||||
import {OpenAi} from './open-ai.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {AiTool} from './tools.ts';
|
||||
import * as tf from '@tensorflow/tfjs';
|
||||
import {Worker} from 'worker_threads';
|
||||
import {fileURLToPath} from 'url';
|
||||
import {dirname, join} from 'path';
|
||||
|
||||
export type LLMMessage = {
|
||||
/** Message originator */
|
||||
@@ -83,11 +84,22 @@ export type LLMRequest = {
|
||||
}
|
||||
|
||||
export class LLM {
|
||||
private embedModel: any;
|
||||
private embedWorker: Worker | null = null;
|
||||
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
|
||||
private embedId = 0;
|
||||
private providers: {[key: string]: LLMProvider} = {};
|
||||
|
||||
|
||||
constructor(public readonly ai: Ai) {
|
||||
this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
|
||||
this.embedWorker.on('message', ({ id, embedding }) => {
|
||||
const pending = this.embedQueue.get(id);
|
||||
if (pending) {
|
||||
pending.resolve(embedding);
|
||||
this.embedQueue.delete(id);
|
||||
}
|
||||
});
|
||||
|
||||
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
|
||||
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
|
||||
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
|
||||
@@ -148,49 +160,44 @@ export class LLM {
|
||||
return denominator === 0 ? 0 : dotProduct / denominator;
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
chunk(target: object | string, maxTokens = 500, overlapTokens = 50): string[] {
|
||||
const objString = (obj: any, path = ''): string[] => {
|
||||
if(obj === null || obj === undefined) return [];
|
||||
if(!obj) return [];
|
||||
return Object.entries(obj).flatMap(([key, value]) => {
|
||||
const p = path ? `${path}${isNaN(+key) ? `.${key}` : `[${key}]`}` : key;
|
||||
if(typeof value === 'object' && value !== null && !Array.isArray(value)) return objString(value, p);
|
||||
const valueStr = Array.isArray(value) ? value.join(', ') : String(value);
|
||||
return `${p}: ${valueStr}`;
|
||||
if(typeof value === 'object' && !Array.isArray(value)) return objString(value, p);
|
||||
return `${p}: ${Array.isArray(value) ? value.join(', ') : value}`;
|
||||
});
|
||||
};
|
||||
|
||||
const embed = async (text: string): Promise<number[]> => {
|
||||
const model = await this.embedModel;
|
||||
const output = await model(text, {pooling: 'mean', normalize: true});
|
||||
return Array.from(output.data);
|
||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||
const tokens = lines.flatMap(l => [...l.split(/\s+/).filter(Boolean), '\n']);
|
||||
const chunks: string[] = [];
|
||||
for(let i = 0; i < tokens.length;) {
|
||||
let text = '', j = i;
|
||||
while(j < tokens.length) {
|
||||
const next = text + (text ? ' ' : '') + tokens[j];
|
||||
if(this.estimateTokens(next.replace(/\s*\n\s*/g, '\n')) > maxTokens && text) break;
|
||||
text = next;
|
||||
j++;
|
||||
}
|
||||
const clean = text.replace(/\s*\n\s*/g, '\n').trim();
|
||||
if(clean) chunks.push(clean);
|
||||
i = Math.max(j - overlapTokens, j === i ? i + 1 : j);
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
const embed = (text: string): Promise<number[]> => {
|
||||
return new Promise((resolve, reject) => {
|
||||
const id = this.embedId++;
|
||||
this.embedQueue.set(id, { resolve, reject });
|
||||
this.embedWorker?.postMessage({ id, text });
|
||||
});
|
||||
};
|
||||
|
||||
// Tokenize
|
||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||
const tokens = lines.flatMap(line => [...line.split(/\s+/).filter(w => w.trim()), '\n']);
|
||||
|
||||
// Chunk
|
||||
const chunks: string[] = [];
|
||||
let start = 0;
|
||||
while (start < tokens.length) {
|
||||
let end = start;
|
||||
let text = '';
|
||||
// Build chunk
|
||||
while (end < tokens.length) {
|
||||
const nextToken = tokens[end];
|
||||
const testText = text + (text ? ' ' : '') + nextToken;
|
||||
const testTokens = this.estimateTokens(testText.replace(/\s*\n\s*/g, '\n'));
|
||||
if (testTokens > maxTokens && text) break;
|
||||
text = testText;
|
||||
end++;
|
||||
}
|
||||
// Save chunk
|
||||
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
|
||||
if(cleanText) chunks.push(cleanText);
|
||||
start = end - overlapTokens;
|
||||
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
|
||||
}
|
||||
|
||||
const chunks = this.chunk(target, maxTokens, overlapTokens);
|
||||
return Promise.all(chunks.map(async (text, index) => ({
|
||||
index,
|
||||
embedding: await embed(text),
|
||||
|
||||
@@ -15,7 +15,7 @@ export class Vision {
|
||||
return {
|
||||
abort: () => { worker?.terminate(); },
|
||||
response: new Promise(async res => {
|
||||
worker = await createWorker('eng', 1, {cachePath: this.ai.options.path});
|
||||
worker = await createWorker(this.ai.options.tesseract?.model || 'eng', 2, {cachePath: this.ai.options.path});
|
||||
const {data} = await worker.recognize(path);
|
||||
await worker.terminate();
|
||||
res(data.text.trim() || null);
|
||||
|
||||
@@ -1,12 +1,19 @@
|
||||
import {defineConfig} from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import {resolve} from 'path';
|
||||
|
||||
export default defineConfig({
|
||||
build: {
|
||||
lib: {
|
||||
entry: './src/index.ts',
|
||||
entry: {
|
||||
index: './src/index.ts',
|
||||
embedder: './src/embedder.ts',
|
||||
},
|
||||
name: 'utils',
|
||||
fileName: (format) => (format === 'es' ? 'index.mjs' : 'index.js'),
|
||||
fileName: (format, entryName) => {
|
||||
if (entryName === 'embedder') return 'embedder.js';
|
||||
return format === 'es' ? 'index.mjs' : 'index.js';
|
||||
},
|
||||
},
|
||||
ssr: true,
|
||||
emptyOutDir: true,
|
||||
|
||||
Reference in New Issue
Block a user