7 Commits
0.2.0 ... 0.2.6

Author SHA1 Message Date
cb60a0b0c5 Moved embeddings to worker to prevent blocking
All checks were successful
Publish Library / Build NPM Project (push) Successful in 41s
Publish Library / Tag Version (push) Successful in 7s
2026-01-28 22:17:39 -05:00
1c59379c7d Set tesseract model
All checks were successful
Publish Library / Build NPM Project (push) Successful in 31s
Publish Library / Tag Version (push) Successful in 5s
2026-01-16 20:33:51 -05:00
6dce0e8954 Fixed tool calls
All checks were successful
Publish Library / Build NPM Project (push) Successful in 39s
Publish Library / Tag Version (push) Successful in 8s
2025-12-27 17:27:53 -05:00
98dd0bb323 Auto download teseract models
All checks were successful
Publish Library / Build NPM Project (push) Successful in 1m4s
Publish Library / Tag Version (push) Successful in 10s
2025-12-22 13:48:53 -05:00
ca5a2334bb bump 2.2.0
All checks were successful
Publish Library / Build NPM Project (push) Successful in 43s
Publish Library / Tag Version (push) Successful in 11s
2025-12-22 11:02:53 -05:00
3cd7b12f5f Configure model path for all libraries
Some checks failed
Publish Library / Tag Version (push) Has been cancelled
Publish Library / Build NPM Project (push) Has been cancelled
2025-12-22 11:02:24 -05:00
bb6933f0d5 Optimized cosineSimilarity
All checks were successful
Publish Library / Build NPM Project (push) Successful in 42s
Publish Library / Tag Version (push) Successful in 7s
2025-12-19 15:22:06 -05:00
10 changed files with 94 additions and 41 deletions

View File

@@ -1,6 +1,6 @@
{
"name": "@ztimson/ai-utils",
"version": "0.2.0",
"version": "0.2.6",
"description": "AI Utility library",
"author": "Zak Timson",
"license": "MIT",

View File

@@ -1,22 +1,26 @@
import * as os from 'node:os';
import {LLM, LLMOptions} from './llm';
import { Audio } from './audio.ts';
import {Vision} from './vision.ts';
export type AiOptions = LLMOptions & {
/** Path to models */
path?: string;
/** Whisper ASR configuration */
whisper?: {
/** Whisper binary location */
binary: string;
/** Model: `ggml-base.en.bin` */
model: string;
/** Path to models */
path: string;
}
/** Tesseract OCR configuration */
tesseract?: {
/** Model: eng, eng_best, eng_fast */
model?: string;
}
}
export class Ai {
private downloads: {[key: string]: Promise<string>} = {};
private whisperModel!: string;
/** Audio processing AI */
audio!: Audio;
/** Language processing AI */
@@ -25,6 +29,8 @@ export class Ai {
vision!: Vision;
constructor(public readonly options: AiOptions) {
if(!options.path) options.path = os.tmpdir();
process.env.TRANSFORMERS_CACHE = options.path;
this.audio = new Audio(this);
this.language = new LLM(this);
this.vision = new Vision(this);

View File

@@ -54,12 +54,14 @@ export class Anthropic extends LLMProvider {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
const original = deepCopy(history);
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
const tools = options.tools || this.ai.options.tools || [];
const requestParams: any = {
model: options.model || this.model,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
system: options.system || this.ai.options.system || '',
temperature: options.temperature || this.ai.options.temperature || 0.7,
tools: (options.tools || this.ai.options.tools || []).map(t => ({
tools: tools.map(t => ({
name: t.name,
description: t.description,
input_schema: {
@@ -76,7 +78,10 @@ export class Anthropic extends LLMProvider {
let resp: any, isFirstMessage = true;
const assistantMessages: string[] = [];
do {
resp = await this.client.messages.create(requestParams);
resp = await this.client.messages.create(requestParams).catch(err => {
err.message += `\n\nMessages:\n${JSON.stringify(history, null, 2)}`;
throw err;
});
// Streaming mode
if(options.stream) {
@@ -114,7 +119,7 @@ export class Anthropic extends LLMProvider {
history.push({role: 'assistant', content: resp.content});
original.push({role: 'assistant', content: resp.content});
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = options.tools?.find(findByProp('name', toolCall.name));
const tool = tools.find(findByProp('name', toolCall.name));
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
try {
const result = await tool.fn(toolCall.input, this.ai);

View File

@@ -48,7 +48,7 @@ export class Audio {
async downloadAsrModel(model: string = this.whisperModel): Promise<string> {
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
if(!model.endsWith('.bin')) model += '.bin';
const p = Path.join(this.ai.options.whisper.path, model);
const p = Path.join(<string>this.ai.options.path, model);
if(await fs.stat(p).then(() => true).catch(() => false)) return p;
if(!!this.downloads[model]) return this.downloads[model];
this.downloads[model] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${model}`)

11
src/embedder.ts Normal file
View File

@@ -0,0 +1,11 @@
import { pipeline } from '@xenova/transformers';
import { parentPort } from 'worker_threads';
let model: any;
parentPort?.on('message', async ({ id, text }) => {
if(!model) model = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
const output = await model(text, { pooling: 'mean', normalize: true });
const embedding = Array.from(output.data);
parentPort?.postMessage({ id, embedding });
});

View File

@@ -1,4 +1,3 @@
import {pipeline} from '@xenova/transformers';
import {JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {Anthropic} from './antrhopic.ts';
@@ -6,7 +5,9 @@ import {Ollama} from './ollama.ts';
import {OpenAi} from './open-ai.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
import {AiTool} from './tools.ts';
import * as tf from '@tensorflow/tfjs';
import {Worker} from 'worker_threads';
import {fileURLToPath} from 'url';
import {dirname, join} from 'path';
export type LLMMessage = {
/** Message originator */
@@ -83,11 +84,22 @@ export type LLMRequest = {
}
export class LLM {
private embedModel: any;
private embedWorker: Worker | null = null;
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
private embedId = 0;
private providers: {[key: string]: LLMProvider} = {};
constructor(public readonly ai: Ai) {
this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
this.embedWorker.on('message', ({ id, embedding }) => {
const pending = this.embedQueue.get(id);
if (pending) {
pending.resolve(embedding);
this.embedQueue.delete(id);
}
});
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
@@ -136,6 +148,18 @@ export class LLM {
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
}
cosineSimilarity(v1: number[], v2: number[]): number {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
let dotProduct = 0, normA = 0, normB = 0;
for (let i = 0; i < v1.length; i++) {
dotProduct += v1[i] * v2[i];
normA += v1[i] * v1[i];
normB += v2[i] * v2[i];
}
const denominator = Math.sqrt(normA) * Math.sqrt(normB);
return denominator === 0 ? 0 : dotProduct / denominator;
}
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
const objString = (obj: any, path = ''): string[] => {
if(obj === null || obj === undefined) return [];
@@ -147,10 +171,12 @@ export class LLM {
});
};
const embed = async (text: string): Promise<number[]> => {
const model = await this.embedModel;
const output = await model(text, {pooling: 'mean', normalize: true});
return Array.from(output.data);
const embed = (text: string): Promise<number[]> => {
return new Promise((resolve, reject) => {
const id = this.embedId++;
this.embedQueue.set(id, { resolve, reject });
this.embedWorker?.postMessage({ id, text });
});
};
// Tokenize
@@ -176,7 +202,7 @@ export class LLM {
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
if(cleanText) chunks.push(cleanText);
start = end - overlapTokens;
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
if(start <= end - tokens.length + end) start = end;
}
return Promise.all(chunks.map(async (text, index) => ({
@@ -205,24 +231,12 @@ export class LLM {
*/
fuzzyMatch(target: string, ...searchTerms: string[]) {
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
const vector = (text: string, dimensions: number = 10): number[] => {
return text.toLowerCase().split('').map((char, index) =>
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
}
const cosineSimilarity = (v1: number[], v2: number[]): number => {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
const dotProduct = tf.dot(tensor1, tensor2)
const magnitude1 = tf.norm(tensor1)
const magnitude2 = tf.norm(tensor2)
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
}
const v = vector(target);
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
const similarities = searchTerms.map(t => vector(t)).map(refVector => this.cosineSimilarity(v, refVector))
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
}

View File

@@ -49,6 +49,7 @@ export class Ollama extends LLMProvider {
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min);
if(options.system) history.unshift({role: 'system', content: system})
const tools = options.tools || this.ai.options.tools || [];
const requestParams: any = {
model: options.model || this.model,
messages: history,
@@ -58,7 +59,7 @@ export class Ollama extends LLMProvider {
temperature: options.temperature || this.ai.options.temperature || 0.7,
num_predict: options.max_tokens || this.ai.options.max_tokens || 4096,
},
tools: (options.tools || this.ai.options.tools || []).map(t => ({
tools: tools.map(t => ({
type: 'function',
function: {
name: t.name,
@@ -74,7 +75,11 @@ export class Ollama extends LLMProvider {
let resp: any, isFirstMessage = true;
do {
resp = await this.client.chat(requestParams);
resp = await this.client.chat(requestParams).catch(err => {
err.message += `\n\nMessages:\n${JSON.stringify(history, null, 2)}`;
throw err;
});
if(options.stream) {
if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
@@ -93,7 +98,7 @@ export class Ollama extends LLMProvider {
if(resp.message?.tool_calls?.length && !controller.signal.aborted) {
history.push(resp.message);
const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => {
const tool = (options.tools || this.ai.options.tools)?.find(findByProp('name', toolCall.function.name));
const tool = tools.find(findByProp('name', toolCall.function.name));
if(!tool) return {role: 'tool', tool_name: toolCall.function.name, content: '{"error": "Tool not found"}'};
const args = typeof toolCall.function.arguments === 'string' ? JSONAttemptParse(toolCall.function.arguments, {}) : toolCall.function.arguments;
try {

View File

@@ -67,13 +67,14 @@ export class OpenAi extends LLMProvider {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
const tools = options.tools || this.ai.options.tools || [];
const requestParams: any = {
model: options.model || this.model,
messages: history,
stream: !!options.stream,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
temperature: options.temperature || this.ai.options.temperature || 0.7,
tools: (options.tools || this.ai.options.tools || []).map(t => ({
tools: tools.map(t => ({
type: 'function',
function: {
name: t.name,
@@ -89,7 +90,11 @@ export class OpenAi extends LLMProvider {
let resp: any, isFirstMessage = true;
do {
resp = await this.client.chat.completions.create(requestParams);
resp = await this.client.chat.completions.create(requestParams).catch(err => {
err.message += `\n\nMessages:\n${JSON.stringify(history, null, 2)}`;
throw err;
});
if(options.stream) {
if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
@@ -110,7 +115,7 @@ export class OpenAi extends LLMProvider {
if(toolCalls.length && !controller.signal.aborted) {
history.push(resp.choices[0].message);
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = options.tools?.find(findByProp('name', toolCall.function.name));
const tool = tools?.find(findByProp('name', toolCall.function.name));
if(!tool) return {role: 'tool', tool_call_id: toolCall.id, content: '{"error": "Tool not found"}'};
try {
const args = JSONAttemptParse(toolCall.function.arguments, {});

View File

@@ -15,7 +15,7 @@ export class Vision {
return {
abort: () => { worker?.terminate(); },
response: new Promise(async res => {
worker = await createWorker('eng');
worker = await createWorker(this.ai.options.tesseract?.model || 'eng', 2, {cachePath: this.ai.options.path});
const {data} = await worker.recognize(path);
await worker.terminate();
res(data.text.trim() || null);

View File

@@ -1,12 +1,19 @@
import {defineConfig} from 'vite';
import dts from 'vite-plugin-dts';
import {resolve} from 'path';
export default defineConfig({
build: {
lib: {
entry: './src/index.ts',
entry: {
index: './src/index.ts',
embedder: './src/embedder.ts',
},
name: 'utils',
fileName: (format) => (format === 'es' ? 'index.mjs' : 'index.js'),
fileName: (format, entryName) => {
if (entryName === 'embedder') return 'embedder.js';
return format === 'es' ? 'index.mjs' : 'index.js';
},
},
ssr: true,
emptyOutDir: true,