Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| bb6933f0d5 |
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@ztimson/ai-utils",
|
"name": "@ztimson/ai-utils",
|
||||||
"version": "0.2.0",
|
"version": "0.2.1",
|
||||||
"description": "AI Utility library",
|
"description": "AI Utility library",
|
||||||
"author": "Zak Timson",
|
"author": "Zak Timson",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
|
|||||||
26
src/llm.ts
26
src/llm.ts
@@ -136,6 +136,18 @@ export class LLM {
|
|||||||
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
|
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
cosineSimilarity(v1: number[], v2: number[]): number {
|
||||||
|
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
||||||
|
let dotProduct = 0, normA = 0, normB = 0;
|
||||||
|
for (let i = 0; i < v1.length; i++) {
|
||||||
|
dotProduct += v1[i] * v2[i];
|
||||||
|
normA += v1[i] * v1[i];
|
||||||
|
normB += v2[i] * v2[i];
|
||||||
|
}
|
||||||
|
const denominator = Math.sqrt(normA) * Math.sqrt(normB);
|
||||||
|
return denominator === 0 ? 0 : dotProduct / denominator;
|
||||||
|
}
|
||||||
|
|
||||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||||
const objString = (obj: any, path = ''): string[] => {
|
const objString = (obj: any, path = ''): string[] => {
|
||||||
if(obj === null || obj === undefined) return [];
|
if(obj === null || obj === undefined) return [];
|
||||||
@@ -205,24 +217,12 @@ export class LLM {
|
|||||||
*/
|
*/
|
||||||
fuzzyMatch(target: string, ...searchTerms: string[]) {
|
fuzzyMatch(target: string, ...searchTerms: string[]) {
|
||||||
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
|
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
|
||||||
|
|
||||||
const vector = (text: string, dimensions: number = 10): number[] => {
|
const vector = (text: string, dimensions: number = 10): number[] => {
|
||||||
return text.toLowerCase().split('').map((char, index) =>
|
return text.toLowerCase().split('').map((char, index) =>
|
||||||
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
|
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
const cosineSimilarity = (v1: number[], v2: number[]): number => {
|
|
||||||
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
|
||||||
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
|
|
||||||
const dotProduct = tf.dot(tensor1, tensor2)
|
|
||||||
const magnitude1 = tf.norm(tensor1)
|
|
||||||
const magnitude2 = tf.norm(tensor2)
|
|
||||||
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
|
|
||||||
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
|
|
||||||
}
|
|
||||||
|
|
||||||
const v = vector(target);
|
const v = vector(target);
|
||||||
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
|
const similarities = searchTerms.map(t => vector(t)).map(refVector => this.cosineSimilarity(v, refVector))
|
||||||
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
|
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user