14 Commits
0.1.8 ... 0.2.0

Author SHA1 Message Date
435c6127b1 Re-organized functions and added semantic embeddings
All checks were successful
Publish Library / Build NPM Project (push) Successful in 46s
Publish Library / Tag Version (push) Successful in 8s
2025-12-19 11:16:05 -05:00
c896b585d0 Fixed LLM multi message responses
All checks were successful
Publish Library / Build NPM Project (push) Successful in 44s
Publish Library / Tag Version (push) Successful in 14s
2025-12-17 19:59:34 -05:00
1fe1e0cafe Fixing message combination on anthropic
All checks were successful
Publish Library / Build NPM Project (push) Successful in 35s
Publish Library / Tag Version (push) Successful in 8s
2025-12-16 16:11:13 -05:00
3aa4684923 Fixing message combination on anthropic
All checks were successful
Publish Library / Build NPM Project (push) Successful in 33s
Publish Library / Tag Version (push) Successful in 7s
2025-12-16 13:07:03 -05:00
0730f5f3f9 Fixed timestamp breaking api calls
All checks were successful
Publish Library / Build NPM Project (push) Successful in 34s
Publish Library / Tag Version (push) Successful in 8s
2025-12-16 12:56:56 -05:00
1a0351aeef Handle multiple AI responses in one question better.
All checks were successful
Publish Library / Build NPM Project (push) Successful in 33s
Publish Library / Tag Version (push) Successful in 8s
2025-12-16 12:46:44 -05:00
a5ed4076b7 Handle anthropic multiple responses better.
All checks were successful
Publish Library / Build NPM Project (push) Successful in 34s
Publish Library / Tag Version (push) Successful in 8s
2025-12-16 12:22:14 -05:00
0112c92505 Removed log statements
All checks were successful
Publish Library / Build NPM Project (push) Successful in 20s
Publish Library / Tag Version (push) Successful in 5s
2025-12-14 21:16:39 -05:00
2351f590b5 Removed ASR file intermediary
All checks were successful
Publish Library / Build NPM Project (push) Successful in 37s
Publish Library / Tag Version (push) Successful in 8s
2025-12-14 09:27:07 -05:00
2c2acef84e ASR logging
All checks were successful
Publish Library / Build NPM Project (push) Successful in 37s
Publish Library / Tag Version (push) Successful in 8s
2025-12-14 08:49:02 -05:00
a6de121551 Fixed ASR command
All checks were successful
Publish Library / Build NPM Project (push) Successful in 26s
Publish Library / Tag Version (push) Successful in 7s
2025-12-13 23:19:30 -05:00
31d9ee4390 ASR Debugging
All checks were successful
Publish Library / Build NPM Project (push) Successful in 43s
Publish Library / Tag Version (push) Successful in 17s
2025-12-13 22:59:23 -05:00
d69bea3b38 Fixed ASR whisper models
All checks were successful
Publish Library / Build NPM Project (push) Successful in 30s
Publish Library / Tag Version (push) Successful in 7s
2025-12-13 22:47:35 -05:00
af4b09173c ASR debugging
All checks were successful
Publish Library / Build NPM Project (push) Successful in 30s
Publish Library / Tag Version (push) Successful in 7s
2025-12-13 22:31:54 -05:00
9 changed files with 1033 additions and 152 deletions

796
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
{ {
"name": "@ztimson/ai-utils", "name": "@ztimson/ai-utils",
"version": "0.1.8", "version": "0.2.0",
"description": "AI Utility library", "description": "AI Utility library",
"author": "Zak Timson", "author": "Zak Timson",
"license": "MIT", "license": "MIT",
@@ -27,6 +27,7 @@
"dependencies": { "dependencies": {
"@anthropic-ai/sdk": "^0.67.0", "@anthropic-ai/sdk": "^0.67.0",
"@tensorflow/tfjs": "^4.22.0", "@tensorflow/tfjs": "^4.22.0",
"@xenova/transformers": "^2.17.2",
"@ztimson/node-utils": "^1.0.4", "@ztimson/node-utils": "^1.0.4",
"@ztimson/utils": "^0.27.9", "@ztimson/utils": "^0.27.9",
"ollama": "^0.6.0", "ollama": "^0.6.0",

119
src/ai.ts
View File

@@ -1,125 +1,32 @@
import {$} from '@ztimson/node-utils';
import {createWorker} from 'tesseract.js';
import {LLM, LLMOptions} from './llm'; import {LLM, LLMOptions} from './llm';
import fs from 'node:fs/promises'; import { Audio } from './audio.ts';
import Path from 'node:path'; import {Vision} from './vision.ts';
import * as tf from '@tensorflow/tfjs';
export type AiOptions = LLMOptions & { export type AiOptions = LLMOptions & {
whisper?: { whisper?: {
/** Whisper binary location */ /** Whisper binary location */
binary: string; binary: string;
/** Model */ /** Model: `ggml-base.en.bin` */
model: WhisperModel; model: string;
/** Path to models */ /** Path to models */
path: string; path: string;
/** Path to storage location for temporary files */
temp?: string;
} }
} }
export type WhisperModel = 'tiny' | 'base' | 'small' | 'medium' | 'large';
export class Ai { export class Ai {
private downloads: {[key: string]: Promise<string>} = {}; private downloads: {[key: string]: Promise<string>} = {};
private whisperModel!: string; private whisperModel!: string;
/** Large Language Models */ /** Audio processing AI */
llm!: LLM; audio!: Audio;
/** Language processing AI */
language!: LLM;
/** Vision processing AI */
vision!: Vision;
constructor(public readonly options: AiOptions) { constructor(public readonly options: AiOptions) {
this.llm = new LLM(this, options); this.audio = new Audio(this);
if(this.options.whisper?.binary) { this.language = new LLM(this);
this.whisperModel = Path.join(<string>this.options.whisper?.path, this.options.whisper?.model + this.options.whisper?.model.endsWith('.bin') ? '' : '.bin'); this.vision = new Vision(this);
this.downloadAsrModel();
}
}
/**
* Convert audio to text using Auditory Speech Recognition
* @param {string} path Path to audio
* @param model Whisper model
* @returns {Promise<any>} Extracted text
*/
async asr(path: string, model?: WhisperModel): Promise<string | null> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
await this.downloadAsrModel(model);
const name = Math.random().toString(36).substring(2, 10) + '-' + path.split('/').pop() + '.txt';
const output = Path.join(this.options.whisper.temp || '/tmp', name);
console.log(`rm -f ${output} && ${this.options.whisper.binary} -nt -np -m ${model ? Path.join(this.options.whisper.path, model) : this.whisperModel} -f ${path} -otxt -of ${output}`);
await $`rm -f ${output} && ${this.options.whisper.binary} -nt -np -m ${model ? Path.join(this.options.whisper.path, model) : this.whisperModel} -f ${path} -otxt -of ${output}`;
return fs.readFile(output, 'utf-8').then(text => text?.trim() || null)
.finally(() => fs.rm(output, {force: true}).catch(() => {}));
}
/**
* Downloads the specified Whisper model if it is not already present locally.
*
* @param {string} model Whisper model that will be downloaded
* @return {Promise<string>} Absolute path to model file, resolves once downloaded
*/
async downloadAsrModel(model?: string): Promise<string> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
let m;
if(model) m = model?.endsWith('.bin') ? model : model + '.bin';
else m = <string>this.whisperModel.split('/').at(-1);
const p = Path.join(this.options.whisper.path, m);
if(await fs.stat(p).then(() => true).catch(() => false)) return p;
if(!!this.downloads[m]) return this.downloads[m];
this.downloads[m] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${m}`)
.then(resp => resp.arrayBuffer())
.then(arr => Buffer.from(arr)).then(async buffer => {
await fs.writeFile(Path.join((<any>this.options.whisper).path, m), buffer);
delete this.downloads[m];
return p;
});
return this.downloads[m];
}
/**
* Convert image to text using Optical Character Recognition
* @param {string} path Path to image
* @returns {{abort: Function, response: Promise<string | null>}} Abort function & Promise of extracted text
*/
ocr(path: string): {abort: () => void, response: Promise<string | null>} {
let worker: any;
return {
abort: () => { worker?.terminate(); },
response: new Promise(async res => {
worker = await createWorker('eng');
const {data} = await worker.recognize(path);
await worker.terminate();
res(data.text.trim() || null);
})
}
}
/**
* Compare the difference between two strings using tensor math
* @param target Text that will checked
* @param {string} searchTerms Multiple search terms to check against target
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
*/
semanticSimilarity(target: string, ...searchTerms: string[]) {
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
const vector = (text: string, dimensions: number = 10): number[] => {
return text.toLowerCase().split('').map((char, index) =>
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
}
const cosineSimilarity = (v1: number[], v2: number[]): number => {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
const dotProduct = tf.dot(tensor1, tensor2)
const magnitude1 = tf.norm(tensor1)
const magnitude2 = tf.norm(tensor2)
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
}
const v = vector(target);
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
} }
} }

View File

@@ -1,5 +1,5 @@
import {Anthropic as anthropic} from '@anthropic-ai/sdk'; import {Anthropic as anthropic} from '@anthropic-ai/sdk';
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils'; import {findByProp, objectMap, JSONSanitize, JSONAttemptParse, deepCopy} from '@ztimson/utils';
import {Ai} from './ai.ts'; import {Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts'; import {LLMMessage, LLMRequest} from './llm.ts';
import {AbortablePromise, LLMProvider} from './provider.ts'; import {AbortablePromise, LLMProvider} from './provider.ts';
@@ -19,7 +19,7 @@ export class Anthropic extends LLMProvider {
if(history[orgI].role == 'assistant') { if(history[orgI].role == 'assistant') {
history[orgI].content.filter((c: any) => c.type =='tool_use').forEach((c: any) => { history[orgI].content.filter((c: any) => c.type =='tool_use').forEach((c: any) => {
i++; i++;
history.splice(i, 0, {role: 'tool', id: c.id, name: c.name, args: c.input}); history.splice(i, 0, {role: 'tool', id: c.id, name: c.name, args: c.input, timestamp: Date.now()});
}); });
} else if(history[orgI].role == 'user') { } else if(history[orgI].role == 'user') {
history[orgI].content.filter((c: any) => c.type =='tool_result').forEach((c: any) => { history[orgI].content.filter((c: any) => c.type =='tool_result').forEach((c: any) => {
@@ -29,6 +29,7 @@ export class Anthropic extends LLMProvider {
} }
history[orgI].content = history[orgI].content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n'); history[orgI].content = history[orgI].content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n');
} }
if(!history[orgI].timestamp) history[orgI].timestamp = Date.now();
} }
return history.filter(h => !!h.content); return history.filter(h => !!h.content);
} }
@@ -44,14 +45,15 @@ export class Anthropic extends LLMProvider {
i++; i++;
} }
} }
return history; return history.map(({timestamp, ...h}) => h);
} }
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> { ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController(); const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => { const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]); let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min, options); const original = deepCopy(history);
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
const requestParams: any = { const requestParams: any = {
model: options.model || this.model, model: options.model || this.model,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096, max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
@@ -71,13 +73,15 @@ export class Anthropic extends LLMProvider {
stream: !!options.stream, stream: !!options.stream,
}; };
// Run tool changes let resp: any, isFirstMessage = true;
let resp: any; const assistantMessages: string[] = [];
do { do {
resp = await this.client.messages.create(requestParams); resp = await this.client.messages.create(requestParams);
// Streaming mode // Streaming mode
if(options.stream) { if(options.stream) {
if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
resp.content = []; resp.content = [];
for await (const chunk of resp) { for await (const chunk of resp) {
if(controller.signal.aborted) break; if(controller.signal.aborted) break;
@@ -108,6 +112,7 @@ export class Anthropic extends LLMProvider {
const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use'); const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use');
if(toolCalls.length && !controller.signal.aborted) { if(toolCalls.length && !controller.signal.aborted) {
history.push({role: 'assistant', content: resp.content}); history.push({role: 'assistant', content: resp.content});
original.push({role: 'assistant', content: resp.content});
const results = await Promise.all(toolCalls.map(async (toolCall: any) => { const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = options.tools?.find(findByProp('name', toolCall.name)); const tool = options.tools?.find(findByProp('name', toolCall.name));
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'}; if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
@@ -122,12 +127,11 @@ export class Anthropic extends LLMProvider {
requestParams.messages = history; requestParams.messages = history;
} }
} while (!controller.signal.aborted && resp.content.some((c: any) => c.type === 'tool_use')); } while (!controller.signal.aborted && resp.content.some((c: any) => c.type === 'tool_use'));
if(options.stream) options.stream({done: true}); if(options.stream) options.stream({done: true});
res(this.toStandard([...history, { res(this.toStandard([...history, {role: 'assistant', content: resp.content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n')}]));
role: 'assistant',
content: resp.content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n')
}]));
}); });
return Object.assign(response, {abort: () => controller.abort()}); return Object.assign(response, {abort: () => controller.abort()});
} }
} }

63
src/audio.ts Normal file
View File

@@ -0,0 +1,63 @@
import {spawn} from 'node:child_process';
import fs from 'node:fs/promises';
import Path from 'node:path';
import {Ai} from './ai.ts';
export class Audio {
private downloads: {[key: string]: Promise<string>} = {};
private whisperModel!: string;
constructor(private ai: Ai) {
if(ai.options.whisper?.binary) {
this.whisperModel = ai.options.whisper?.model.endsWith('.bin') ? ai.options.whisper?.model : ai.options.whisper?.model + '.bin';
this.downloadAsrModel();
}
}
/**
* Convert audio to text using Auditory Speech Recognition
* @param {string} path Path to audio
* @param model Whisper model
* @returns {Promise<any>} Extracted text
*/
asr(path: string, model: string = this.whisperModel): {abort: () => void, response: Promise<string | null>} {
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
let abort: any = () => {};
const response = new Promise<string | null>((resolve, reject) => {
this.downloadAsrModel(model).then(m => {
let output = '';
const proc = spawn(<string>this.ai.options.whisper?.binary, ['-nt', '-np', '-m', m, '-f', path], {stdio: ['ignore', 'pipe', 'ignore']});
abort = () => proc.kill('SIGTERM');
proc.on('error', (err: Error) => reject(err));
proc.stdout.on('data', (data: Buffer) => output += data.toString());
proc.on('close', (code: number) => {
if(code === 0) resolve(output.trim() || null);
else reject(new Error(`Exit code ${code}`));
});
});
});
return {response, abort};
}
/**
* Downloads the specified Whisper model if it is not already present locally.
*
* @param {string} model Whisper model that will be downloaded
* @return {Promise<string>} Absolute path to model file, resolves once downloaded
*/
async downloadAsrModel(model: string = this.whisperModel): Promise<string> {
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
if(!model.endsWith('.bin')) model += '.bin';
const p = Path.join(this.ai.options.whisper.path, model);
if(await fs.stat(p).then(() => true).catch(() => false)) return p;
if(!!this.downloads[model]) return this.downloads[model];
this.downloads[model] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${model}`)
.then(resp => resp.arrayBuffer())
.then(arr => Buffer.from(arr)).then(async buffer => {
await fs.writeFile(p, buffer);
delete this.downloads[model];
return p;
});
return this.downloads[model];
}
}

View File

@@ -1,3 +1,4 @@
import {pipeline} from '@xenova/transformers';
import {JSONAttemptParse} from '@ztimson/utils'; import {JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts'; import {Ai} from './ai.ts';
import {Anthropic} from './antrhopic.ts'; import {Anthropic} from './antrhopic.ts';
@@ -5,12 +6,15 @@ import {Ollama} from './ollama.ts';
import {OpenAi} from './open-ai.ts'; import {OpenAi} from './open-ai.ts';
import {AbortablePromise, LLMProvider} from './provider.ts'; import {AbortablePromise, LLMProvider} from './provider.ts';
import {AiTool} from './tools.ts'; import {AiTool} from './tools.ts';
import * as tf from '@tensorflow/tfjs';
export type LLMMessage = { export type LLMMessage = {
/** Message originator */ /** Message originator */
role: 'assistant' | 'system' | 'user'; role: 'assistant' | 'system' | 'user';
/** Message content */ /** Message content */
content: string | any; content: string | any;
/** Timestamp */
timestamp?: number;
} | { } | {
/** Tool call */ /** Tool call */
role: 'tool'; role: 'tool';
@@ -24,6 +28,8 @@ export type LLMMessage = {
content: undefined | string; content: undefined | string;
/** Tool error */ /** Tool error */
error: undefined | string; error: undefined | string;
/** Timestamp */
timestamp?: number;
} }
export type LLMOptions = { export type LLMOptions = {
@@ -77,12 +83,14 @@ export type LLMRequest = {
} }
export class LLM { export class LLM {
private embedModel: any;
private providers: {[key: string]: LLMProvider} = {}; private providers: {[key: string]: LLMProvider} = {};
constructor(public readonly ai: Ai, public readonly options: LLMOptions) { constructor(public readonly ai: Ai) {
if(options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, options.anthropic.token, options.anthropic.model); this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
if(options.ollama?.host) this.providers.ollama = new Ollama(this.ai, options.ollama.host, options.ollama.model); if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
if(options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, options.openAi.token, options.openAi.model); if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
} }
/** /**
@@ -95,11 +103,11 @@ export class LLM {
let model: any = [null, null]; let model: any = [null, null];
if(options.model) { if(options.model) {
if(typeof options.model == 'object') model = options.model; if(typeof options.model == 'object') model = options.model;
else model = [options.model, (<any>this.options)[options.model]?.model]; else model = [options.model, (<any>this.ai.options)[options.model]?.model];
} }
if(!options.model || model[1] == null) { if(!options.model || model[1] == null) {
if(typeof this.options.model == 'object') model = this.options.model; if(typeof this.ai.options.model == 'object') model = this.ai.options.model;
else model = [this.options.model, (<any>this.options)[this.options.model]?.model]; else model = [this.ai.options.model, (<any>this.ai.options)[this.ai.options.model]?.model];
} }
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`); if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
return this.providers[model[0]].ask(message, {...options, model: model[1]}); return this.providers[model[0]].ask(message, {...options, model: model[1]});
@@ -113,7 +121,7 @@ export class LLM {
* @param {LLMRequest} options LLM options * @param {LLMRequest} options LLM options
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0 * @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
*/ */
async compress(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> { async compressHistory(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
if(this.estimateTokens(history) < max) return history; if(this.estimateTokens(history) < max) return history;
let keep = 0, tokens = 0; let keep = 0, tokens = 0;
for(let m of history.toReversed()) { for(let m of history.toReversed()) {
@@ -125,7 +133,58 @@ export class LLM {
const recent = keep == 0 ? [] : history.slice(-keep), const recent = keep == 0 ? [] : history.slice(-keep),
process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user'); process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user');
const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options); const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options);
return [{role: 'assistant', content: `Conversation Summary: ${summary}`}, ...recent]; return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
}
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
const objString = (obj: any, path = ''): string[] => {
if(obj === null || obj === undefined) return [];
return Object.entries(obj).flatMap(([key, value]) => {
const p = path ? `${path}${isNaN(+key) ? `.${key}` : `[${key}]`}` : key;
if(typeof value === 'object' && value !== null && !Array.isArray(value)) return objString(value, p);
const valueStr = Array.isArray(value) ? value.join(', ') : String(value);
return `${p}: ${valueStr}`;
});
};
const embed = async (text: string): Promise<number[]> => {
const model = await this.embedModel;
const output = await model(text, {pooling: 'mean', normalize: true});
return Array.from(output.data);
};
// Tokenize
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
const tokens = lines.flatMap(line => [...line.split(/\s+/).filter(w => w.trim()), '\n']);
// Chunk
const chunks: string[] = [];
let start = 0;
while (start < tokens.length) {
let end = start;
let text = '';
// Build chunk
while (end < tokens.length) {
const nextToken = tokens[end];
const testText = text + (text ? ' ' : '') + nextToken;
const testTokens = this.estimateTokens(testText.replace(/\s*\n\s*/g, '\n'));
if (testTokens > maxTokens && text) break;
text = testText;
end++;
}
// Save chunk
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
if(cleanText) chunks.push(cleanText);
start = end - overlapTokens;
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
}
return Promise.all(chunks.map(async (text, index) => ({
index,
embedding: await embed(text),
text,
tokens: this.estimateTokens(text),
})));
} }
/** /**
@@ -138,6 +197,35 @@ export class LLM {
return Math.ceil((text.length / 4) * 1.2); return Math.ceil((text.length / 4) * 1.2);
} }
/**
* Compare the difference between two strings using tensor math
* @param target Text that will checked
* @param {string} searchTerms Multiple search terms to check against target
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
*/
fuzzyMatch(target: string, ...searchTerms: string[]) {
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
const vector = (text: string, dimensions: number = 10): number[] => {
return text.toLowerCase().split('').map((char, index) =>
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
}
const cosineSimilarity = (v1: number[], v2: number[]): number => {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
const dotProduct = tf.dot(tensor1, tensor2)
const magnitude1 = tf.norm(tensor1)
const magnitude2 = tf.norm(tensor2)
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
}
const v = vector(target);
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
}
/** /**
* Ask a question with JSON response * Ask a question with JSON response
* @param {string} message Question * @param {string} message Question

View File

@@ -22,15 +22,17 @@ export class Ollama extends LLMProvider {
} }
} else if(history[i].role == 'tool') { } else if(history[i].role == 'tool') {
const error = history[i].content.startsWith('{"error":'); const error = history[i].content.startsWith('{"error":');
history[i] = {role: 'tool', name: history[i].tool_name, args: history[i].args, [error ? 'error' : 'content']: history[i].content}; history[i] = {role: 'tool', name: history[i].tool_name, args: history[i].args, [error ? 'error' : 'content']: history[i].content, timestamp: history[i].timestamp};
} }
if(!history[i]?.timestamp) history[i].timestamp = Date.now();
} }
return history; return history;
} }
private fromStandard(history: LLMMessage[]): any[] { private fromStandard(history: LLMMessage[]): any[] {
return history.map((h: any) => { return history.map((h: any) => {
if(h.role != 'tool') return h; const {timestamp, ...rest} = h;
if(h.role != 'tool') return rest;
return {role: 'tool', tool_name: h.name, content: h.error || h.content} return {role: 'tool', tool_name: h.name, content: h.error || h.content}
}); });
} }
@@ -39,12 +41,12 @@ export class Ollama extends LLMProvider {
const controller = new AbortController(); const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => { const response = new Promise<any>(async (res, rej) => {
let system = options.system || this.ai.options.system; let system = options.system || this.ai.options.system;
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]); let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
if(history[0].roll == 'system') { if(history[0].roll == 'system') {
if(!system) system = history.shift(); if(!system) system = history.shift();
else history.shift(); else history.shift();
} }
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min); if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min);
if(options.system) history.unshift({role: 'system', content: system}) if(options.system) history.unshift({role: 'system', content: system})
const requestParams: any = { const requestParams: any = {
@@ -70,11 +72,12 @@ export class Ollama extends LLMProvider {
})) }))
} }
// Run tool chains let resp: any, isFirstMessage = true;
let resp: any;
do { do {
resp = await this.client.chat(requestParams); resp = await this.client.chat(requestParams);
if(options.stream) { if(options.stream) {
if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
resp.message = {role: 'assistant', content: '', tool_calls: []}; resp.message = {role: 'assistant', content: '', tool_calls: []};
for await (const chunk of resp) { for await (const chunk of resp) {
if(controller.signal.aborted) break; if(controller.signal.aborted) break;
@@ -87,7 +90,6 @@ export class Ollama extends LLMProvider {
} }
} }
// Run tools
if(resp.message?.tool_calls?.length && !controller.signal.aborted) { if(resp.message?.tool_calls?.length && !controller.signal.aborted) {
history.push(resp.message); history.push(resp.message);
const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => { const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => {
@@ -105,9 +107,11 @@ export class Ollama extends LLMProvider {
requestParams.messages = history; requestParams.messages = history;
} }
} while (!controller.signal.aborted && resp.message?.tool_calls?.length); } while (!controller.signal.aborted && resp.message?.tool_calls?.length);
if(options.stream) options.stream({done: true}); if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {role: 'assistant', content: resp.message?.content}])); res(this.toStandard([...history, {role: 'assistant', content: resp.message?.content}]));
}); });
return Object.assign(response, {abort: () => controller.abort()}); return Object.assign(response, {abort: () => controller.abort()});
} }
} }

View File

@@ -20,7 +20,8 @@ export class OpenAi extends LLMProvider {
role: 'tool', role: 'tool',
id: tc.id, id: tc.id,
name: tc.function.name, name: tc.function.name,
args: JSONAttemptParse(tc.function.arguments, {}) args: JSONAttemptParse(tc.function.arguments, {}),
timestamp: h.timestamp
})); }));
history.splice(i, 1, ...tools); history.splice(i, 1, ...tools);
i += tools.length - 1; i += tools.length - 1;
@@ -33,7 +34,7 @@ export class OpenAi extends LLMProvider {
history.splice(i, 1); history.splice(i, 1);
i--; i--;
} }
if(!history[i]?.timestamp) history[i].timestamp = Date.now();
} }
return history; return history;
} }
@@ -46,14 +47,15 @@ export class OpenAi extends LLMProvider {
content: null, content: null,
tool_calls: [{ id: h.id, type: 'function', function: { name: h.name, arguments: JSON.stringify(h.args) } }], tool_calls: [{ id: h.id, type: 'function', function: { name: h.name, arguments: JSON.stringify(h.args) } }],
refusal: null, refusal: null,
annotations: [], annotations: []
}, { }, {
role: 'tool', role: 'tool',
tool_call_id: h.id, tool_call_id: h.id,
content: h.error || h.content content: h.error || h.content
}); });
} else { } else {
result.push(h); const {timestamp, ...rest} = h;
result.push(rest);
} }
return result; return result;
}, [] as any[]); }, [] as any[]);
@@ -62,8 +64,8 @@ export class OpenAi extends LLMProvider {
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> { ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController(); const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => { const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]); let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min, options); if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
const requestParams: any = { const requestParams: any = {
model: options.model || this.model, model: options.model || this.model,
@@ -85,23 +87,25 @@ export class OpenAi extends LLMProvider {
})) }))
}; };
// Tool call and streaming logic similar to other providers let resp: any, isFirstMessage = true;
let resp: any;
do { do {
resp = await this.client.chat.completions.create(requestParams); resp = await this.client.chat.completions.create(requestParams);
// Implement streaming and tool call handling
if(options.stream) { if(options.stream) {
resp.choices = []; if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
resp.choices = [{message: {content: '', tool_calls: []}}];
for await (const chunk of resp) { for await (const chunk of resp) {
if(controller.signal.aborted) break; if(controller.signal.aborted) break;
if(chunk.choices[0].delta.content) { if(chunk.choices[0].delta.content) {
resp.choices[0].message.content += chunk.choices[0].delta.content;
options.stream({text: chunk.choices[0].delta.content}); options.stream({text: chunk.choices[0].delta.content});
} }
if(chunk.choices[0].delta.tool_calls) {
resp.choices[0].message.tool_calls = chunk.choices[0].delta.tool_calls;
}
} }
} }
// Run tools
const toolCalls = resp.choices[0].message.tool_calls || []; const toolCalls = resp.choices[0].message.tool_calls || [];
if(toolCalls.length && !controller.signal.aborted) { if(toolCalls.length && !controller.signal.aborted) {
history.push(resp.choices[0].message); history.push(resp.choices[0].message);
@@ -124,7 +128,6 @@ export class OpenAi extends LLMProvider {
if(options.stream) options.stream({done: true}); if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {role: 'assistant', content: resp.choices[0].message.content || ''}])); res(this.toStandard([...history, {role: 'assistant', content: resp.choices[0].message.content || ''}]));
}); });
return Object.assign(response, {abort: () => controller.abort()}); return Object.assign(response, {abort: () => controller.abort()});
} }
} }

25
src/vision.ts Normal file
View File

@@ -0,0 +1,25 @@
import {createWorker} from 'tesseract.js';
import {Ai} from './ai.ts';
export class Vision {
constructor(private ai: Ai) { }
/**
* Convert image to text using Optical Character Recognition
* @param {string} path Path to image
* @returns {{abort: Function, response: Promise<string | null>}} Abort function & Promise of extracted text
*/
ocr(path: string): {abort: () => void, response: Promise<string | null>} {
let worker: any;
return {
abort: () => { worker?.terminate(); },
response: new Promise(async res => {
worker = await createWorker('eng');
const {data} = await worker.recognize(path);
await worker.terminate();
res(data.text.trim() || null);
})
}
}
}