Updated default embedder
All checks were successful
Publish Library / Build NPM Project (push) Successful in 39s
Publish Library / Tag Version (push) Successful in 8s

This commit is contained in:
2026-02-11 20:23:50 -05:00
parent cda7db4f45
commit f2c66b0cb8
4 changed files with 8 additions and 6 deletions

View File

@@ -1,6 +1,6 @@
{ {
"name": "@ztimson/ai-utils", "name": "@ztimson/ai-utils",
"version": "0.5.1", "version": "0.5.2",
"description": "AI Utility library", "description": "AI Utility library",
"author": "Zak Timson", "author": "Zak Timson",
"license": "MIT", "license": "MIT",

View File

@@ -10,6 +10,8 @@ export type AbortablePromise<T> = Promise<T> & {
export type AiOptions = { export type AiOptions = {
/** Path to models */ /** Path to models */
path?: string; path?: string;
/** Embedding model */
embedder?: string; // all-MiniLM-L6-v2, bge-small-en-v1.5, bge-large-en-v1.5
/** Large language models, first is default */ /** Large language models, first is default */
llm?: Omit<LLMRequest, 'model'> & { llm?: Omit<LLMRequest, 'model'> & {
models: {[model: string]: AnthropicConfig | OllamaConfig | OpenAiConfig}; models: {[model: string]: AnthropicConfig | OllamaConfig | OpenAiConfig};

View File

@@ -1,11 +1,11 @@
import { pipeline } from '@xenova/transformers'; import { pipeline } from '@xenova/transformers';
import { parentPort } from 'worker_threads'; import { parentPort } from 'worker_threads';
let model: any; let embedder: any;
parentPort?.on('message', async ({ id, text }) => { parentPort?.on('message', async ({ id, text, model }) => {
if(!model) model = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'); if(!embedder) embedder = await pipeline('feature-extraction', 'Xenova/' + model);
const output = await model(text, { pooling: 'mean', normalize: true }); const output = await embedder(text, { pooling: 'mean', normalize: true });
const embedding = Array.from(output.data); const embedding = Array.from(output.data);
parentPort?.postMessage({ id, embedding }); parentPort?.postMessage({ id, embedding });
}); });

View File

@@ -271,7 +271,7 @@ class LLM {
return new Promise((resolve, reject) => { return new Promise((resolve, reject) => {
const id = this.embedId++; const id = this.embedId++;
this.embedQueue.set(id, { resolve, reject }); this.embedQueue.set(id, { resolve, reject });
this.embedWorker?.postMessage({ id, text }); this.embedWorker?.postMessage({ id, text, model: this.ai.options?.embedder || 'bge-small-en-v1.5' });
}); });
}; };
const chunks = this.chunk(target, maxTokens, overlapTokens); const chunks = this.chunk(target, maxTokens, overlapTokens);