Added memory system
This commit is contained in:
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@ztimson/ai-utils",
|
"name": "@ztimson/ai-utils",
|
||||||
"version": "0.4.1",
|
"version": "0.5.1",
|
||||||
"description": "AI Utility library",
|
"description": "AI Utility library",
|
||||||
"author": "Zak Timson",
|
"author": "Zak Timson",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
|
|||||||
@@ -1,9 +1,11 @@
|
|||||||
import * as os from 'node:os';
|
import * as os from 'node:os';
|
||||||
import {LLM, AnthropicConfig, OllamaConfig, OpenAiConfig, LLMRequest} from './llm';
|
import LLM, {AnthropicConfig, OllamaConfig, OpenAiConfig, LLMRequest} from './llm';
|
||||||
import { Audio } from './audio.ts';
|
import { Audio } from './audio.ts';
|
||||||
import {Vision} from './vision.ts';
|
import {Vision} from './vision.ts';
|
||||||
|
|
||||||
export type AbortablePromise<T> = Promise<T> & {abort: () => any};
|
export type AbortablePromise<T> = Promise<T> & {
|
||||||
|
abort: () => any
|
||||||
|
};
|
||||||
|
|
||||||
export type AiOptions = {
|
export type AiOptions = {
|
||||||
/** Path to models */
|
/** Path to models */
|
||||||
|
|||||||
@@ -18,8 +18,7 @@ export class Anthropic extends LLMProvider {
|
|||||||
if(typeof history[orgI].content != 'string') {
|
if(typeof history[orgI].content != 'string') {
|
||||||
if(history[orgI].role == 'assistant') {
|
if(history[orgI].role == 'assistant') {
|
||||||
history[orgI].content.filter((c: any) => c.type =='tool_use').forEach((c: any) => {
|
history[orgI].content.filter((c: any) => c.type =='tool_use').forEach((c: any) => {
|
||||||
i++;
|
history.splice(i + 1, 0, {role: 'tool', id: c.id, name: c.name, args: c.input, timestamp: Date.now()});
|
||||||
history.splice(i, 0, {role: 'tool', id: c.id, name: c.name, args: c.input, timestamp: Date.now()});
|
|
||||||
});
|
});
|
||||||
} else if(history[orgI].role == 'user') {
|
} else if(history[orgI].role == 'user') {
|
||||||
history[orgI].content.filter((c: any) => c.type =='tool_result').forEach((c: any) => {
|
history[orgI].content.filter((c: any) => c.type =='tool_result').forEach((c: any) => {
|
||||||
@@ -28,6 +27,7 @@ export class Anthropic extends LLMProvider {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
history[orgI].content = history[orgI].content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n');
|
history[orgI].content = history[orgI].content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n');
|
||||||
|
if(!history[orgI].content) history.splice(orgI, 1);
|
||||||
}
|
}
|
||||||
if(!history[orgI].timestamp) history[orgI].timestamp = Date.now();
|
if(!history[orgI].timestamp) history[orgI].timestamp = Date.now();
|
||||||
}
|
}
|
||||||
@@ -48,13 +48,10 @@ export class Anthropic extends LLMProvider {
|
|||||||
return history.map(({timestamp, ...h}) => h);
|
return history.map(({timestamp, ...h}) => h);
|
||||||
}
|
}
|
||||||
|
|
||||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
ask(message: string, options: LLMRequest = {}): AbortablePromise<string> {
|
||||||
const controller = new AbortController();
|
const controller = new AbortController();
|
||||||
const response = new Promise<any>(async (res, rej) => {
|
return Object.assign(new Promise<any>(async (res, rej) => {
|
||||||
let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
|
const history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
|
||||||
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
|
|
||||||
history = this.fromStandard(<any>history);
|
|
||||||
|
|
||||||
const tools = options.tools || this.ai.options.llm?.tools || [];
|
const tools = options.tools || this.ai.options.llm?.tools || [];
|
||||||
const requestParams: any = {
|
const requestParams: any = {
|
||||||
model: options.model || this.model,
|
model: options.model || this.model,
|
||||||
@@ -122,7 +119,8 @@ export class Anthropic extends LLMProvider {
|
|||||||
if(options.stream) options.stream({tool: toolCall.name});
|
if(options.stream) options.stream({tool: toolCall.name});
|
||||||
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
|
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
|
||||||
try {
|
try {
|
||||||
const result = await tool.fn(toolCall.input, this.ai);
|
console.log(typeof tool.fn);
|
||||||
|
const result = await tool.fn(toolCall.input, options?.stream, this.ai);
|
||||||
return {type: 'tool_result', tool_use_id: toolCall.id, content: JSONSanitize(result)};
|
return {type: 'tool_result', tool_use_id: toolCall.id, content: JSONSanitize(result)};
|
||||||
} catch (err: any) {
|
} catch (err: any) {
|
||||||
return {type: 'tool_result', tool_use_id: toolCall.id, is_error: true, content: err?.message || err?.toString() || 'Unknown'};
|
return {type: 'tool_result', tool_use_id: toolCall.id, is_error: true, content: err?.message || err?.toString() || 'Unknown'};
|
||||||
@@ -132,11 +130,12 @@ export class Anthropic extends LLMProvider {
|
|||||||
requestParams.messages = history;
|
requestParams.messages = history;
|
||||||
}
|
}
|
||||||
} while (!controller.signal.aborted && resp.content.some((c: any) => c.type === 'tool_use'));
|
} while (!controller.signal.aborted && resp.content.some((c: any) => c.type === 'tool_use'));
|
||||||
|
history.push({role: 'assistant', content: resp.content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n')});
|
||||||
|
this.toStandard(history);
|
||||||
|
|
||||||
if(options.stream) options.stream({done: true});
|
if(options.stream) options.stream({done: true});
|
||||||
res(this.toStandard([...history, {role: 'assistant', content: resp.content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n')}]));
|
if(options.history) options.history.splice(0, options.history.length, ...history);
|
||||||
});
|
res(history.at(-1)?.content);
|
||||||
|
}), {abort: () => controller.abort()});
|
||||||
return Object.assign(response, {abort: () => controller.abort()});
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
154
src/llm.ts
154
src/llm.ts
@@ -31,11 +31,23 @@ export type LLMMessage = {
|
|||||||
/** Tool result */
|
/** Tool result */
|
||||||
content: undefined | string;
|
content: undefined | string;
|
||||||
/** Tool error */
|
/** Tool error */
|
||||||
error: undefined | string;
|
error?: undefined | string;
|
||||||
/** Timestamp */
|
/** Timestamp */
|
||||||
timestamp?: number;
|
timestamp?: number;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Background information the AI will be fed */
|
||||||
|
export type LLMMemory = {
|
||||||
|
/** What entity is this fact about */
|
||||||
|
owner: string;
|
||||||
|
/** The information that will be remembered */
|
||||||
|
fact: string;
|
||||||
|
/** Owner and fact embedding vector */
|
||||||
|
embeddings: [number[], number[]];
|
||||||
|
/** Creation time */
|
||||||
|
timestamp: Date;
|
||||||
|
}
|
||||||
|
|
||||||
export type LLMRequest = {
|
export type LLMRequest = {
|
||||||
/** System prompt */
|
/** System prompt */
|
||||||
system?: string;
|
system?: string;
|
||||||
@@ -57,10 +69,12 @@ export type LLMRequest = {
|
|||||||
max: number;
|
max: number;
|
||||||
/** Compress chat until context size smaller than */
|
/** Compress chat until context size smaller than */
|
||||||
min: number
|
min: number
|
||||||
}
|
},
|
||||||
|
/** Background information the AI will be fed */
|
||||||
|
memory?: LLMMemory[],
|
||||||
}
|
}
|
||||||
|
|
||||||
export class LLM {
|
class LLM {
|
||||||
private embedWorker: Worker | null = null;
|
private embedWorker: Worker | null = null;
|
||||||
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
|
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
|
||||||
private embedId = 0;
|
private embedId = 0;
|
||||||
@@ -90,37 +104,115 @@ export class LLM {
|
|||||||
* Chat with LLM
|
* Chat with LLM
|
||||||
* @param {string} message Question
|
* @param {string} message Question
|
||||||
* @param {LLMRequest} options Configuration options and chat history
|
* @param {LLMRequest} options Configuration options and chat history
|
||||||
* @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history
|
* @returns {{abort: () => void, response: Promise<string>}} Function to abort response and chat history
|
||||||
*/
|
*/
|
||||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
ask(message: string, options: LLMRequest = {}): AbortablePromise<string> {
|
||||||
const m = options.model || this.defaultModel;
|
const m = options.model || this.defaultModel;
|
||||||
if(!this.models[m]) throw new Error(`Model does not exist: ${m}`);
|
if(!this.models[m]) throw new Error(`Model does not exist: ${m}`);
|
||||||
return this.models[m].ask(message, options);
|
let abort = () => {};
|
||||||
|
return Object.assign(new Promise<string>(async res => {
|
||||||
|
if(!options.history) options.history = [];
|
||||||
|
// If memories were passed, find any relivant ones and add a tool for ADHOC lookups
|
||||||
|
if(options.memory) {
|
||||||
|
options.system = (options.system || '') + '\nYou have passive persistent memory never make any mention of your memory capabilities and what you can/cannot remember\n';
|
||||||
|
const search = async (query?: string | null, subject?: string | null, limit = 50) => {
|
||||||
|
const [o, q] = await Promise.all([
|
||||||
|
subject ? this.embedding(subject) : Promise.resolve(null),
|
||||||
|
query ? this.embedding(query) : Promise.resolve(null),
|
||||||
|
]);
|
||||||
|
return (options.memory || [])
|
||||||
|
.map(m => ({...m, score: o ? this.cosineSimilarity(m.embeddings[0], o[0].embedding) : 1}))
|
||||||
|
.filter((m: any) => m.score >= 0.8)
|
||||||
|
.map((m: any) => ({...m, score: q ? this.cosineSimilarity(m.embeddings[1], q[0].embedding) : m.score}))
|
||||||
|
.filter((m: any) => m.score >= 0.2)
|
||||||
|
.toSorted((a: any, b: any) => a.score - b.score)
|
||||||
|
.slice(0, limit);
|
||||||
|
}
|
||||||
|
|
||||||
|
const relevant = await search(message);
|
||||||
|
if(relevant.length) options.history.push({role: 'assistant', content: 'Things I remembered:\n' + relevant.map(m => `${m.owner}: ${m.fact}`).join('\n')});
|
||||||
|
options.tools = [...options.tools || [], {
|
||||||
|
name: 'read_memory',
|
||||||
|
description: 'Check your long-term memory for more information',
|
||||||
|
args: {
|
||||||
|
subject: {type: 'string', description: 'Find information by a subject topic, can be used with or without query argument'},
|
||||||
|
query: {type: 'string', description: 'Search memory based on a query, can be used with or without subject argument'},
|
||||||
|
limit: {type: 'number', description: 'Result limit, default 5'},
|
||||||
|
},
|
||||||
|
fn: (args) => {
|
||||||
|
if(!args.subject && !args.query) throw new Error('Either a subject or query argument is required');
|
||||||
|
return search(args.query, args.subject, args.limit || 5);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Ask
|
||||||
|
const resp = await this.models[m].ask(message, options);
|
||||||
|
|
||||||
|
// Remove any memory calls
|
||||||
|
if(options.memory) {
|
||||||
|
const i = options.history?.findIndex((h: any) => h.role == 'assistant' && h.content.startsWith('Things I remembered:'));
|
||||||
|
if(i != null && i >= 0) options.history?.splice(i, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle compression and memory extraction
|
||||||
|
if(options.compress || options.memory) {
|
||||||
|
let compressed = null;
|
||||||
|
if(options.compress) {
|
||||||
|
compressed = await this.ai.language.compressHistory(options.history, options.compress.max, options.compress.min, options);
|
||||||
|
options.history.splice(0, options.history.length, ...compressed.history);
|
||||||
|
} else {
|
||||||
|
const i = options.history?.findLastIndex(m => m.role == 'user') ?? -1;
|
||||||
|
compressed = await this.ai.language.compressHistory(i != -1 ? options.history.slice(i) : options.history, 0, 0, options);
|
||||||
|
}
|
||||||
|
if(options.memory) {
|
||||||
|
const updated = options.memory
|
||||||
|
.filter(m => !compressed.memory.some(m2 => this.cosineSimilarity(m.embeddings[1], m2.embeddings[1]) > 0.8))
|
||||||
|
.concat(compressed.memory);
|
||||||
|
options.memory.splice(0, options.memory.length, ...updated);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return res(resp);
|
||||||
|
}), {abort});
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Compress chat history to reduce context size
|
* Compress chat history to reduce context size
|
||||||
* @param {LLMMessage[]} history Chatlog that will be compressed
|
* @param {LLMMessage[]} history Chatlog that will be compressed
|
||||||
* @param max Trigger compression once context is larger than max
|
* @param max Trigger compression once context is larger than max
|
||||||
* @param min Summarize until context size is less than min
|
* @param min Leave messages less than the token minimum, summarize the rest
|
||||||
* @param {LLMRequest} options LLM options
|
* @param {LLMRequest} options LLM options
|
||||||
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
|
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
|
||||||
*/
|
*/
|
||||||
async compressHistory(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
|
async compressHistory(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<{history: LLMMessage[], memory: LLMMemory[]}> {
|
||||||
if(this.estimateTokens(history) < max) return history;
|
if(this.estimateTokens(history) < max) return {history, memory: []};
|
||||||
let keep = 0, tokens = 0;
|
let keep = 0, tokens = 0;
|
||||||
for(let m of history.toReversed()) {
|
for(let m of history.toReversed()) {
|
||||||
tokens += this.estimateTokens(m.content);
|
tokens += this.estimateTokens(m.content);
|
||||||
if(tokens < min) keep++;
|
if(tokens < min) keep++;
|
||||||
else break;
|
else break;
|
||||||
}
|
}
|
||||||
if(history.length <= keep) return history;
|
if(history.length <= keep) return {history, memory: []};
|
||||||
const recent = keep == 0 ? [] : history.slice(-keep),
|
const system = history[0].role == 'system' ? history[0] : null,
|
||||||
|
recent = keep == 0 ? [] : history.slice(-keep),
|
||||||
process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user');
|
process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user');
|
||||||
const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options);
|
const summary: any = await this.json(`Create the smallest summary possible, no more than 500 tokens. Create a list of NEW facts (split by subject [pro]noun and fact) about what you learned from this conversation that you didn't already know or get from a tool call or system prompt. Focus only on new information about people, topics, or facts. Avoid generating facts about the AI. Match this format: {summary: string, facts: [[subject, fact]]}\n\n${process.map(m => `${m.role}: ${m.content}`).join('\n\n')}`, {model: options?.model, temperature: options?.temperature || 0.3});
|
||||||
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
|
const timestamp = new Date();
|
||||||
|
const memory = await Promise.all((summary?.facts || [])?.map(async ([owner, fact]: [string, string]) => {
|
||||||
|
const e = await Promise.all([this.embedding(owner), this.embedding(`${owner}: ${fact}`)]);
|
||||||
|
return {owner, fact, embeddings: [e[0][0].embedding, e[1][0].embedding], timestamp};
|
||||||
|
}));
|
||||||
|
const h = [{role: 'assistant', content: `Conversation Summary: ${summary?.summary}`, timestamp: Date.now()}, ...recent];
|
||||||
|
if(system) h.splice(0, 0, system);
|
||||||
|
return {history: <any>h, memory};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compare the difference between embeddings (calculates the angle between two vectors)
|
||||||
|
* @param {number[]} v1 First embedding / vector comparison
|
||||||
|
* @param {number[]} v2 Second embedding / vector for comparison
|
||||||
|
* @returns {number} Similarity values 0-1: 0 = unique, 1 = identical
|
||||||
|
*/
|
||||||
cosineSimilarity(v1: number[], v2: number[]): number {
|
cosineSimilarity(v1: number[], v2: number[]): number {
|
||||||
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
||||||
let dotProduct = 0, normA = 0, normB = 0;
|
let dotProduct = 0, normA = 0, normB = 0;
|
||||||
@@ -133,6 +225,13 @@ export class LLM {
|
|||||||
return denominator === 0 ? 0 : dotProduct / denominator;
|
return denominator === 0 ? 0 : dotProduct / denominator;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Chunk text into parts for AI digestion
|
||||||
|
* @param {object | string} target Item that will be chunked (objects get converted)
|
||||||
|
* @param {number} maxTokens Chunking size. More = better context, less = more specific (Search by paragraphs or lines)
|
||||||
|
* @param {number} overlapTokens Includes previous X tokens to provide continuity to AI (In addition to max tokens)
|
||||||
|
* @returns {string[]} Chunked strings
|
||||||
|
*/
|
||||||
chunk(target: object | string, maxTokens = 500, overlapTokens = 50): string[] {
|
chunk(target: object | string, maxTokens = 500, overlapTokens = 50): string[] {
|
||||||
const objString = (obj: any, path = ''): string[] => {
|
const objString = (obj: any, path = ''): string[] => {
|
||||||
if(!obj) return [];
|
if(!obj) return [];
|
||||||
@@ -142,7 +241,6 @@ export class LLM {
|
|||||||
return `${p}: ${Array.isArray(value) ? value.join(', ') : value}`;
|
return `${p}: ${Array.isArray(value) ? value.join(', ') : value}`;
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||||
const tokens = lines.flatMap(l => [...l.split(/\s+/).filter(Boolean), '\n']);
|
const tokens = lines.flatMap(l => [...l.split(/\s+/).filter(Boolean), '\n']);
|
||||||
const chunks: string[] = [];
|
const chunks: string[] = [];
|
||||||
@@ -161,6 +259,13 @@ export class LLM {
|
|||||||
return chunks;
|
return chunks;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a vector representation of a string
|
||||||
|
* @param {object | string} target Item that will be embedded (objects get converted)
|
||||||
|
* @param {number} maxTokens Chunking size. More = better context, less = more specific (Search by paragraphs or lines)
|
||||||
|
* @param {number} overlapTokens Includes previous X tokens to provide continuity to AI (In addition to max tokens)
|
||||||
|
* @returns {Promise<Awaited<{index: number, embedding: number[], text: string, tokens: number}>[]>} Chunked embeddings
|
||||||
|
*/
|
||||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||||
const embed = (text: string): Promise<number[]> => {
|
const embed = (text: string): Promise<number[]> => {
|
||||||
return new Promise((resolve, reject) => {
|
return new Promise((resolve, reject) => {
|
||||||
@@ -169,7 +274,6 @@ export class LLM {
|
|||||||
this.embedWorker?.postMessage({ id, text });
|
this.embedWorker?.postMessage({ id, text });
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
const chunks = this.chunk(target, maxTokens, overlapTokens);
|
const chunks = this.chunk(target, maxTokens, overlapTokens);
|
||||||
return Promise.all(chunks.map(async (text, index) => ({
|
return Promise.all(chunks.map(async (text, index) => ({
|
||||||
index,
|
index,
|
||||||
@@ -191,7 +295,7 @@ export class LLM {
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Compare the difference between two strings using tensor math
|
* Compare the difference between two strings using tensor math
|
||||||
* @param target Text that will checked
|
* @param target Text that will be checked
|
||||||
* @param {string} searchTerms Multiple search terms to check against target
|
* @param {string} searchTerms Multiple search terms to check against target
|
||||||
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
|
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
|
||||||
*/
|
*/
|
||||||
@@ -212,13 +316,12 @@ export class LLM {
|
|||||||
* @param {LLMRequest} options Configuration options and chat history
|
* @param {LLMRequest} options Configuration options and chat history
|
||||||
* @returns {Promise<{} | {} | RegExpExecArray | null>}
|
* @returns {Promise<{} | {} | RegExpExecArray | null>}
|
||||||
*/
|
*/
|
||||||
async json(message: string, options?: LLMRequest) {
|
async json(message: string, options?: LLMRequest): Promise<any> {
|
||||||
let resp = await this.ask(message, {
|
let resp = await this.ask(message, {system: 'Respond using a JSON blob matching any provided examples', ...options});
|
||||||
system: 'Respond using a JSON blob',
|
if(!resp) return {};
|
||||||
...options
|
const codeBlock = /```(?:.+)?\s*([\s\S]*?)```/.exec(resp);
|
||||||
});
|
const jsonStr = codeBlock ? codeBlock[1].trim() : resp;
|
||||||
if(!resp?.[0]?.content) return {};
|
return JSONAttemptParse(jsonStr, {});
|
||||||
return JSONAttemptParse(new RegExp('\{[\s\S]*\}').exec(resp[0].content), {});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -229,7 +332,8 @@ export class LLM {
|
|||||||
* @returns {Promise<string>} Summary
|
* @returns {Promise<string>} Summary
|
||||||
*/
|
*/
|
||||||
summarize(text: string, tokens: number, options?: LLMRequest): Promise<string | null> {
|
summarize(text: string, tokens: number, options?: LLMRequest): Promise<string | null> {
|
||||||
return this.ask(text, {system: `Generate a brief summary <= ${tokens} tokens. Output nothing else`, temperature: 0.3, ...options})
|
return this.ask(text, {system: `Generate a brief summary <= ${tokens} tokens. Output nothing else`, temperature: 0.3, ...options});
|
||||||
.then(history => <string>history.pop()?.content || null);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
export default LLM;
|
||||||
|
|||||||
@@ -64,13 +64,11 @@ export class OpenAi extends LLMProvider {
|
|||||||
}, [] as any[]);
|
}, [] as any[]);
|
||||||
}
|
}
|
||||||
|
|
||||||
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
|
ask(message: string, options: LLMRequest = {}): AbortablePromise<string> {
|
||||||
const controller = new AbortController();
|
const controller = new AbortController();
|
||||||
const response = new Promise<any>(async (res, rej) => {
|
return Object.assign(new Promise<any>(async (res, rej) => {
|
||||||
let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
|
if(options.system && options.history?.[0]?.role != 'system') options.history?.splice(0, 0, {role: 'system', content: options.system, timestamp: Date.now()});
|
||||||
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
|
const history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
|
||||||
history = this.fromStandard(<any>history);
|
|
||||||
|
|
||||||
const tools = options.tools || this.ai.options.llm?.tools || [];
|
const tools = options.tools || this.ai.options.llm?.tools || [];
|
||||||
const requestParams: any = {
|
const requestParams: any = {
|
||||||
model: options.model || this.model,
|
model: options.model || this.model,
|
||||||
@@ -124,7 +122,7 @@ export class OpenAi extends LLMProvider {
|
|||||||
if(!tool) return {role: 'tool', tool_call_id: toolCall.id, content: '{"error": "Tool not found"}'};
|
if(!tool) return {role: 'tool', tool_call_id: toolCall.id, content: '{"error": "Tool not found"}'};
|
||||||
try {
|
try {
|
||||||
const args = JSONAttemptParse(toolCall.function.arguments, {});
|
const args = JSONAttemptParse(toolCall.function.arguments, {});
|
||||||
const result = await tool.fn(args, this.ai);
|
const result = await tool.fn(args, options.stream, this.ai);
|
||||||
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize(result)};
|
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize(result)};
|
||||||
} catch (err: any) {
|
} catch (err: any) {
|
||||||
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
|
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
|
||||||
@@ -134,10 +132,12 @@ export class OpenAi extends LLMProvider {
|
|||||||
requestParams.messages = history;
|
requestParams.messages = history;
|
||||||
}
|
}
|
||||||
} while (!controller.signal.aborted && resp.choices?.[0]?.message?.tool_calls?.length);
|
} while (!controller.signal.aborted && resp.choices?.[0]?.message?.tool_calls?.length);
|
||||||
|
history.push({role: 'assistant', content: resp.choices[0].message.content || ''});
|
||||||
|
this.toStandard(history);
|
||||||
|
|
||||||
if(options.stream) options.stream({done: true});
|
if(options.stream) options.stream({done: true});
|
||||||
res(this.toStandard([...history, {role: 'assistant', content: resp.choices[0].message.content || ''}]));
|
if(options.history) options.history.splice(0, options.history.length, ...history);
|
||||||
});
|
res(history.at(-1)?.content);
|
||||||
return Object.assign(response, {abort: () => controller.abort()});
|
}), {abort: () => controller.abort()});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -2,5 +2,5 @@ import {AbortablePromise} from './ai.ts';
|
|||||||
import {LLMMessage, LLMRequest} from './llm.ts';
|
import {LLMMessage, LLMRequest} from './llm.ts';
|
||||||
|
|
||||||
export abstract class LLMProvider {
|
export abstract class LLMProvider {
|
||||||
abstract ask(message: string, options: LLMRequest): AbortablePromise<LLMMessage[]>;
|
abstract ask(message: string, options: LLMRequest): AbortablePromise<string>;
|
||||||
}
|
}
|
||||||
|
|||||||
11
src/tools.ts
11
src/tools.ts
@@ -2,6 +2,7 @@ import * as cheerio from 'cheerio';
|
|||||||
import {$, $Sync} from '@ztimson/node-utils';
|
import {$, $Sync} from '@ztimson/node-utils';
|
||||||
import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils';
|
import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils';
|
||||||
import {Ai} from './ai.ts';
|
import {Ai} from './ai.ts';
|
||||||
|
import {LLMRequest} from './llm.ts';
|
||||||
|
|
||||||
export type AiToolArg = {[key: string]: {
|
export type AiToolArg = {[key: string]: {
|
||||||
/** Argument type */
|
/** Argument type */
|
||||||
@@ -32,7 +33,7 @@ export type AiTool = {
|
|||||||
/** Tool arguments */
|
/** Tool arguments */
|
||||||
args?: AiToolArg,
|
args?: AiToolArg,
|
||||||
/** Callback function */
|
/** Callback function */
|
||||||
fn: (args: any, ai: Ai) => any | Promise<any>,
|
fn: (args: any, stream: LLMRequest['stream'], ai: Ai) => any | Promise<any>,
|
||||||
};
|
};
|
||||||
|
|
||||||
export const CliTool: AiTool = {
|
export const CliTool: AiTool = {
|
||||||
@@ -56,15 +57,15 @@ export const ExecTool: AiTool = {
|
|||||||
language: {type: 'string', description: 'Execution language', enum: ['cli', 'node', 'python'], required: true},
|
language: {type: 'string', description: 'Execution language', enum: ['cli', 'node', 'python'], required: true},
|
||||||
code: {type: 'string', description: 'Code to execute', required: true}
|
code: {type: 'string', description: 'Code to execute', required: true}
|
||||||
},
|
},
|
||||||
fn: async (args, ai) => {
|
fn: async (args, stream, ai) => {
|
||||||
try {
|
try {
|
||||||
switch(args.type) {
|
switch(args.type) {
|
||||||
case 'bash':
|
case 'bash':
|
||||||
return await CliTool.fn({command: args.code}, ai);
|
return await CliTool.fn({command: args.code}, stream, ai);
|
||||||
case 'node':
|
case 'node':
|
||||||
return await JSTool.fn({code: args.code}, ai);
|
return await JSTool.fn({code: args.code}, stream, ai);
|
||||||
case 'python': {
|
case 'python': {
|
||||||
return await PythonTool.fn({code: args.code}, ai);
|
return await PythonTool.fn({code: args.code}, stream, ai);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} catch(err: any) {
|
} catch(err: any) {
|
||||||
|
|||||||
Reference in New Issue
Block a user