Moved embeddings to worker to prevent blocking
All checks were successful
Publish Library / Build NPM Project (push) Successful in 41s
Publish Library / Tag Version (push) Successful in 7s

This commit is contained in:
2026-01-28 22:17:39 -05:00
parent 1c59379c7d
commit cb60a0b0c5
4 changed files with 44 additions and 12 deletions

View File

@@ -1,6 +1,6 @@
{
"name": "@ztimson/ai-utils",
"version": "0.2.5",
"version": "0.2.6",
"description": "AI Utility library",
"author": "Zak Timson",
"license": "MIT",

11
src/embedder.ts Normal file
View File

@@ -0,0 +1,11 @@
import { pipeline } from '@xenova/transformers';
import { parentPort } from 'worker_threads';
let model: any;
parentPort?.on('message', async ({ id, text }) => {
if(!model) model = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
const output = await model(text, { pooling: 'mean', normalize: true });
const embedding = Array.from(output.data);
parentPort?.postMessage({ id, embedding });
});

View File

@@ -1,4 +1,3 @@
import {pipeline} from '@xenova/transformers';
import {JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {Anthropic} from './antrhopic.ts';
@@ -6,7 +5,9 @@ import {Ollama} from './ollama.ts';
import {OpenAi} from './open-ai.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
import {AiTool} from './tools.ts';
import * as tf from '@tensorflow/tfjs';
import {Worker} from 'worker_threads';
import {fileURLToPath} from 'url';
import {dirname, join} from 'path';
export type LLMMessage = {
/** Message originator */
@@ -83,11 +84,22 @@ export type LLMRequest = {
}
export class LLM {
private embedModel: any;
private embedWorker: Worker | null = null;
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
private embedId = 0;
private providers: {[key: string]: LLMProvider} = {};
constructor(public readonly ai: Ai) {
this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
this.embedWorker.on('message', ({ id, embedding }) => {
const pending = this.embedQueue.get(id);
if (pending) {
pending.resolve(embedding);
this.embedQueue.delete(id);
}
});
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
@@ -159,10 +171,12 @@ export class LLM {
});
};
const embed = async (text: string): Promise<number[]> => {
const model = await this.embedModel;
const output = await model(text, {pooling: 'mean', normalize: true});
return Array.from(output.data);
const embed = (text: string): Promise<number[]> => {
return new Promise((resolve, reject) => {
const id = this.embedId++;
this.embedQueue.set(id, { resolve, reject });
this.embedWorker?.postMessage({ id, text });
});
};
// Tokenize
@@ -188,7 +202,7 @@ export class LLM {
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
if(cleanText) chunks.push(cleanText);
start = end - overlapTokens;
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
if(start <= end - tokens.length + end) start = end;
}
return Promise.all(chunks.map(async (text, index) => ({

View File

@@ -1,12 +1,19 @@
import {defineConfig} from 'vite';
import dts from 'vite-plugin-dts';
import {resolve} from 'path';
export default defineConfig({
build: {
lib: {
entry: './src/index.ts',
entry: {
index: './src/index.ts',
embedder: './src/embedder.ts',
},
name: 'utils',
fileName: (format) => (format === 'es' ? 'index.mjs' : 'index.js'),
fileName: (format, entryName) => {
if (entryName === 'embedder') return 'embedder.js';
return format === 'es' ? 'index.mjs' : 'index.js';
},
},
ssr: true,
emptyOutDir: true,