Updated LLM config and added read_webpage
All checks were successful
Publish Library / Build NPM Project (push) Successful in 46s
Publish Library / Tag Version (push) Successful in 6s

This commit is contained in:
2026-02-01 13:16:08 -05:00
parent 28904cddbe
commit 7b57a0ded1
11 changed files with 840 additions and 384 deletions

878
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
{ {
"name": "@ztimson/ai-utils", "name": "@ztimson/ai-utils",
"version": "0.3.0", "version": "0.4.0",
"description": "AI Utility library", "description": "AI Utility library",
"author": "Zak Timson", "author": "Zak Timson",
"license": "MIT", "license": "MIT",
@@ -30,7 +30,7 @@
"@xenova/transformers": "^2.17.2", "@xenova/transformers": "^2.17.2",
"@ztimson/node-utils": "^1.0.4", "@ztimson/node-utils": "^1.0.4",
"@ztimson/utils": "^0.27.9", "@ztimson/utils": "^0.27.9",
"ollama": "^0.6.0", "cheerio": "^1.2.0",
"openai": "^6.6.0", "openai": "^6.6.0",
"tesseract.js": "^6.0.1" "tesseract.js": "^6.0.1"
}, },
@@ -42,7 +42,6 @@
"vite-plugin-dts": "^4.5.3" "vite-plugin-dts": "^4.5.3"
}, },
"files": [ "files": [
"bin",
"dist" "dist"
] ]
} }

View File

@@ -1,18 +1,17 @@
import * as os from 'node:os'; import * as os from 'node:os';
import {LLM, LLMOptions} from './llm'; import {LLM, AnthropicConfig, OllamaConfig, OpenAiConfig, LLMRequest} from './llm';
import { Audio } from './audio.ts'; import { Audio } from './audio.ts';
import {Vision} from './vision.ts'; import {Vision} from './vision.ts';
export type AbortablePromise<T> = Promise<T> & {abort: () => any}; export type AbortablePromise<T> = Promise<T> & {abort: () => any};
export type AiOptions = LLMOptions & { export type AiOptions = {
/** Path to models */ /** Path to models */
path?: string; path?: string;
/** Piper TTS configuratoin */ /** Large language models, first is default */
piper?: { llm?: Omit<LLMRequest, 'model'> & {
/** Model URL: `https://huggingface.co/rhasspy/piper-voices/tree/main/.../model.onnx` */ models: {[model: string]: AnthropicConfig | OllamaConfig | OpenAiConfig};
model: string; }
},
/** Tesseract OCR configuration */ /** Tesseract OCR configuration */
tesseract?: { tesseract?: {
/** Model: eng, eng_best, eng_fast */ /** Model: eng, eng_best, eng_fast */

View File

@@ -1,5 +1,5 @@
import {Anthropic as anthropic} from '@anthropic-ai/sdk'; import {Anthropic as anthropic} from '@anthropic-ai/sdk';
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse, deepCopy} from '@ztimson/utils'; import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
import {AbortablePromise, Ai} from './ai.ts'; import {AbortablePromise, Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts'; import {LLMMessage, LLMRequest} from './llm.ts';
import {LLMProvider} from './provider.ts'; import {LLMProvider} from './provider.ts';
@@ -51,16 +51,16 @@ export class Anthropic extends LLMProvider {
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> { ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController(); const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => { const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]); let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
const original = deepCopy(history);
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options); if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
history = this.fromStandard(<any>history);
const tools = options.tools || this.ai.options.tools || []; const tools = options.tools || this.ai.options.llm?.tools || [];
const requestParams: any = { const requestParams: any = {
model: options.model || this.model, model: options.model || this.model,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096, max_tokens: options.max_tokens || this.ai.options.llm?.max_tokens || 4096,
system: options.system || this.ai.options.system || '', system: options.system || this.ai.options.llm?.system || '',
temperature: options.temperature || this.ai.options.temperature || 0.7, temperature: options.temperature || this.ai.options.llm?.temperature || 0.7,
tools: tools.map(t => ({ tools: tools.map(t => ({
name: t.name, name: t.name,
description: t.description, description: t.description,
@@ -117,7 +117,6 @@ export class Anthropic extends LLMProvider {
const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use'); const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use');
if(toolCalls.length && !controller.signal.aborted) { if(toolCalls.length && !controller.signal.aborted) {
history.push({role: 'assistant', content: resp.content}); history.push({role: 'assistant', content: resp.content});
original.push({role: 'assistant', content: resp.content});
const results = await Promise.all(toolCalls.map(async (toolCall: any) => { const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = tools.find(findByProp('name', toolCall.name)); const tool = tools.find(findByProp('name', toolCall.name));
if(options.stream) options.stream({tool: toolCall.name}); if(options.stream) options.stream({tool: toolCall.name});

View File

@@ -1,6 +1,4 @@
import {spawn} from 'node:child_process'; import {spawn} from 'node:child_process';
import * as os from 'node:os';
import {platform, arch} from 'node:os';
import fs from 'node:fs/promises'; import fs from 'node:fs/promises';
import Path from 'node:path'; import Path from 'node:path';
import {AbortablePromise, Ai} from './ai.ts'; import {AbortablePromise, Ai} from './ai.ts';
@@ -8,21 +6,12 @@ import {AbortablePromise, Ai} from './ai.ts';
export class Audio { export class Audio {
private downloads: {[key: string]: Promise<string>} = {}; private downloads: {[key: string]: Promise<string>} = {};
private whisperModel!: string; private whisperModel!: string;
private piperBinary?: string;
constructor(private ai: Ai) { constructor(private ai: Ai) {
if(ai.options.whisper?.binary) { if(ai.options.whisper?.binary) {
this.whisperModel = ai.options.whisper?.model.endsWith('.bin') ? ai.options.whisper?.model : ai.options.whisper?.model + '.bin'; this.whisperModel = ai.options.whisper?.model.endsWith('.bin') ? ai.options.whisper?.model : ai.options.whisper?.model + '.bin';
this.downloadAsrModel(); this.downloadAsrModel();
} }
if(ai.options.piper?.model) {
if(!ai.options.piper.model.startsWith('http') || !ai.options.piper.model.endsWith('.onnx'))
throw new Error('Piper model should be a URL to an onnx file to download');
if(platform() != 'linux' || (arch() != 'x64' && arch() != 'arm64'))
throw new Error('Piper TTS only supported on Linux x64/arm64');
this.piperBinary = Path.join(import.meta.dirname, '../bin/piper');
this.downloadTtsModel();
}
} }
asr(path: string, model: string = this.whisperModel): AbortablePromise<string | null> { asr(path: string, model: string = this.whisperModel): AbortablePromise<string | null> {
@@ -43,38 +32,6 @@ export class Audio {
return Object.assign(p, {abort}); return Object.assign(p, {abort});
} }
tts(text: string, outputPath?: string, model: string = <string>this.ai.options.piper?.model): AbortablePromise<Buffer | string> {
if(!this.piperBinary) throw new Error('Piper not configured');
if(!model) throw new Error('Invalid Piper model');
let abort: any = () => {};
const p = new Promise<Buffer | string>(async (resolve, reject) => {
const modelPath = await this.downloadTtsModel(model);
const tmpFile = outputPath || Path.join(os.tmpdir(), `piper_${Date.now()}.wav`);
const proc = spawn(<string>this.piperBinary, ['--model', modelPath, '--output_file', tmpFile], {
stdio: ['pipe', 'ignore', 'ignore'],
env: {...process.env, LD_LIBRARY_PATH: Path.dirname(<string>this.piperBinary)}
});
abort = () => proc.kill('SIGTERM');
proc.stdin.write(text);
proc.stdin.end();
proc.on('error', (err: Error) => reject(err));
proc.on('close', async (code: number) => {
if(code === 0) {
if(outputPath) {
resolve(outputPath);
} else {
const buffer = await fs.readFile(tmpFile);
await fs.unlink(tmpFile).catch(() => {});
resolve(buffer);
}
} else {
reject(new Error(`Exit code ${code}`));
}
});
});
return Object.assign(p, {abort});
}
async downloadAsrModel(model: string = this.whisperModel): Promise<string> { async downloadAsrModel(model: string = this.whisperModel): Promise<string> {
if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured'); if(!this.ai.options.whisper?.binary) throw new Error('Whisper not configured');
if(!model.endsWith('.bin')) model += '.bin'; if(!model.endsWith('.bin')) model += '.bin';
@@ -90,24 +47,4 @@ export class Audio {
}); });
return this.downloads[model]; return this.downloads[model];
} }
async downloadTtsModel(model: string = <string>this.ai.options.piper?.model): Promise<string> {
if(!model) throw new Error('Invalid Piper model');
const m = <string>model.split('/').pop();
const p = Path.join(<string>this.ai.options.path, m);
const [onnxExists, jsonExists] = await Promise.all([
fs.stat(p).then(() => true).catch(() => false),
fs.stat(p + '.json').then(() => true).catch(() => false)
]);
if(onnxExists && jsonExists) return p;
if(!!this.downloads[m]) return this.downloads[m];
this.downloads[m] = Promise.all([
onnxExists ? Promise.resolve() : fetch(model).then(r => r.arrayBuffer()).then(b => fs.writeFile(p, Buffer.from(b))),
jsonExists ? Promise.resolve() : fetch(model + '.json').then(r => r.arrayBuffer()).then(b => fs.writeFile(p + '.json', Buffer.from(b)))
]).then(() => {
delete this.downloads[m];
return p;
});
return this.downloads[m];
}
} }

View File

@@ -1,4 +1,9 @@
export * from './ai'; export * from './ai';
export * from './antrhopic'; export * from './antrhopic';
export * from './audio';
export * from './embedder'
export * from './llm'; export * from './llm';
export * from './open-ai';
export * from './provider';
export * from './tools'; export * from './tools';
export * from './vision';

View File

@@ -1,7 +1,6 @@
import {JSONAttemptParse} from '@ztimson/utils'; import {JSONAttemptParse} from '@ztimson/utils';
import {AbortablePromise, Ai} from './ai.ts'; import {AbortablePromise, Ai} from './ai.ts';
import {Anthropic} from './antrhopic.ts'; import {Anthropic} from './antrhopic.ts';
import {Ollama} from './ollama.ts';
import {OpenAi} from './open-ai.ts'; import {OpenAi} from './open-ai.ts';
import {LLMProvider} from './provider.ts'; import {LLMProvider} from './provider.ts';
import {AiTool} from './tools.ts'; import {AiTool} from './tools.ts';
@@ -9,6 +8,10 @@ import {Worker} from 'worker_threads';
import {fileURLToPath} from 'url'; import {fileURLToPath} from 'url';
import {dirname, join} from 'path'; import {dirname, join} from 'path';
export type AnthropicConfig = {proto: 'anthropic', token: string};
export type OllamaConfig = {proto: 'ollama', host: string};
export type OpenAiConfig = {proto: 'openai', host?: string, token: string};
export type LLMMessage = { export type LLMMessage = {
/** Message originator */ /** Message originator */
role: 'assistant' | 'system' | 'user'; role: 'assistant' | 'system' | 'user';
@@ -33,32 +36,6 @@ export type LLMMessage = {
timestamp?: number; timestamp?: number;
} }
export type LLMOptions = {
/** Anthropic settings */
anthropic?: {
/** API Token */
token: string;
/** Default model */
model: string;
},
/** Ollama settings */
ollama?: {
/** connection URL */
host: string;
/** Default model */
model: string;
},
/** Open AI settings */
openAi?: {
/** API Token */
token: string;
/** Default model */
model: string;
},
/** Default provider & model */
model: string | [string, string];
} & Omit<LLMRequest, 'model'>;
export type LLMRequest = { export type LLMRequest = {
/** System prompt */ /** System prompt */
system?: string; system?: string;
@@ -71,7 +48,7 @@ export type LLMRequest = {
/** Available tools */ /** Available tools */
tools?: AiTool[]; tools?: AiTool[];
/** LLM model */ /** LLM model */
model?: string | [string, string]; model?: string;
/** Stream response */ /** Stream response */
stream?: (chunk: {text?: string, tool?: string, done?: true}) => any; stream?: (chunk: {text?: string, tool?: string, done?: true}) => any;
/** Compress old messages in the chat to free up context */ /** Compress old messages in the chat to free up context */
@@ -87,8 +64,8 @@ export class LLM {
private embedWorker: Worker | null = null; private embedWorker: Worker | null = null;
private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>(); private embedQueue = new Map<number, { resolve: (value: number[]) => void; reject: (error: any) => void }>();
private embedId = 0; private embedId = 0;
private providers: {[key: string]: LLMProvider} = {}; private models: {[model: string]: LLMProvider} = {};
private defaultModel!: string;
constructor(public readonly ai: Ai) { constructor(public readonly ai: Ai) {
this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js')); this.embedWorker = new Worker(join(dirname(fileURLToPath(import.meta.url)), 'embedder.js'));
@@ -100,9 +77,13 @@ export class LLM {
} }
}); });
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model); if(!ai.options.llm?.models) return;
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model); Object.entries(ai.options.llm.models).forEach(([model, config]) => {
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model); if(!this.defaultModel) this.defaultModel = model;
if(config.proto == 'anthropic') this.models[model] = new Anthropic(this.ai, config.token, model);
else if(config.proto == 'ollama') this.models[model] = new OpenAi(this.ai, config.host, 'not-needed', model);
else if(config.proto == 'openai') this.models[model] = new OpenAi(this.ai, config.host || null, config.token, model);
});
} }
/** /**
@@ -112,17 +93,9 @@ export class LLM {
* @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history * @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history
*/ */
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> { ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
let model: any = [null, null]; const m = options.model || this.defaultModel;
if(options.model) { if(!this.models[m]) throw new Error(`Model does not exist: ${m}`);
if(typeof options.model == 'object') model = options.model; return this.models[m].ask(message, options);
else model = [options.model, (<any>this.ai.options)[options.model]?.model];
}
if(!options.model || model[1] == null) {
if(typeof this.ai.options.model == 'object') model = this.ai.options.model;
else model = [this.ai.options.model, (<any>this.ai.options)[this.ai.options.model]?.model];
}
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
return this.providers[model[0]].ask(message, {...options, model: model[1]});
} }
/** /**

View File

@@ -1,123 +0,0 @@
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
import {AbortablePromise, Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts';
import {LLMProvider} from './provider.ts';
import {Ollama as ollama} from 'ollama';
export class Ollama extends LLMProvider {
client!: ollama;
constructor(public readonly ai: Ai, public host: string, public model: string) {
super();
this.client = new ollama({host});
}
private toStandard(history: any[]): LLMMessage[] {
for(let i = 0; i < history.length; i++) {
if(history[i].role == 'assistant' && history[i].tool_calls) {
if(history[i].content) delete history[i].tool_calls;
else {
history.splice(i, 1);
i--;
}
} else if(history[i].role == 'tool') {
const error = history[i].content.startsWith('{"error":');
history[i] = {role: 'tool', name: history[i].tool_name, args: history[i].args, [error ? 'error' : 'content']: history[i].content, timestamp: history[i].timestamp};
}
if(!history[i]?.timestamp) history[i].timestamp = Date.now();
}
return history;
}
private fromStandard(history: LLMMessage[]): any[] {
return history.map((h: any) => {
const {timestamp, ...rest} = h;
if(h.role != 'tool') return rest;
return {role: 'tool', tool_name: h.name, content: h.error || h.content}
});
}
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => {
let system = options.system || this.ai.options.system;
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]);
if(history[0].roll == 'system') {
if(!system) system = history.shift();
else history.shift();
}
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min);
if(options.system) history.unshift({role: 'system', content: system})
const tools = options.tools || this.ai.options.tools || [];
const requestParams: any = {
model: options.model || this.model,
messages: history,
stream: !!options.stream,
signal: controller.signal,
options: {
temperature: options.temperature || this.ai.options.temperature || 0.7,
num_predict: options.max_tokens || this.ai.options.max_tokens || 4096,
},
tools: tools.map(t => ({
type: 'function',
function: {
name: t.name,
description: t.description,
parameters: {
type: 'object',
properties: t.args ? objectMap(t.args, (key, value) => ({...value, required: undefined})) : {},
required: t.args ? Object.entries(t.args).filter(t => t[1].required).map(t => t[0]) : []
}
}
}))
}
let resp: any, isFirstMessage = true;
do {
resp = await this.client.chat(requestParams).catch(err => {
err.message += `\n\nMessages:\n${JSON.stringify(history, null, 2)}`;
throw err;
});
if(options.stream) {
if(!isFirstMessage) options.stream({text: '\n\n'});
else isFirstMessage = false;
resp.message = {role: 'assistant', content: '', tool_calls: []};
for await (const chunk of resp) {
if(controller.signal.aborted) break;
if(chunk.message?.content) {
resp.message.content += chunk.message.content;
options.stream({text: chunk.message.content});
}
if(chunk.message?.tool_calls) resp.message.tool_calls = chunk.message.tool_calls;
if(chunk.done) break;
}
}
if(resp.message?.tool_calls?.length && !controller.signal.aborted) {
history.push(resp.message);
const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => {
const tool = tools.find(findByProp('name', toolCall.function.name));
if(options.stream) options.stream({tool: toolCall.function.name});
if(!tool) return {role: 'tool', tool_name: toolCall.function.name, content: '{"error": "Tool not found"}'};
const args = typeof toolCall.function.arguments === 'string' ? JSONAttemptParse(toolCall.function.arguments, {}) : toolCall.function.arguments;
try {
const result = await tool.fn(args, this.ai);
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize(result)};
} catch (err: any) {
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
}
}));
history.push(...results);
requestParams.messages = history;
}
} while (!controller.signal.aborted && resp.message?.tool_calls?.length);
if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {role: 'assistant', content: resp.message?.content}]));
});
return Object.assign(response, {abort: () => controller.abort()});
}
}

View File

@@ -1,5 +1,5 @@
import {OpenAI as openAI} from 'openai'; import {OpenAI as openAI} from 'openai';
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils'; import {findByProp, objectMap, JSONSanitize, JSONAttemptParse, clean} from '@ztimson/utils';
import {AbortablePromise, Ai} from './ai.ts'; import {AbortablePromise, Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts'; import {LLMMessage, LLMRequest} from './llm.ts';
import {LLMProvider} from './provider.ts'; import {LLMProvider} from './provider.ts';
@@ -7,9 +7,12 @@ import {LLMProvider} from './provider.ts';
export class OpenAi extends LLMProvider { export class OpenAi extends LLMProvider {
client!: openAI; client!: openAI;
constructor(public readonly ai: Ai, public readonly apiToken: string, public model: string) { constructor(public readonly ai: Ai, public readonly host: string | null, public readonly token: string, public model: string) {
super(); super();
this.client = new openAI({apiKey: apiToken}); this.client = new openAI(clean({
baseURL: host,
apiKey: token
}));
} }
private toStandard(history: any[]): LLMMessage[] { private toStandard(history: any[]): LLMMessage[] {
@@ -64,16 +67,17 @@ export class OpenAi extends LLMProvider {
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> { ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController(); const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => { const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message, timestamp: Date.now()}]); let history = [...options.history || [], {role: 'user', content: message, timestamp: Date.now()}];
if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options); if(options.compress) history = await this.ai.language.compressHistory(<any>history, options.compress.max, options.compress.min, options);
history = this.fromStandard(<any>history);
const tools = options.tools || this.ai.options.tools || []; const tools = options.tools || this.ai.options.llm?.tools || [];
const requestParams: any = { const requestParams: any = {
model: options.model || this.model, model: options.model || this.model,
messages: history, messages: history,
stream: !!options.stream, stream: !!options.stream,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096, max_tokens: options.max_tokens || this.ai.options.llm?.max_tokens || 4096,
temperature: options.temperature || this.ai.options.temperature || 0.7, temperature: options.temperature || this.ai.options.llm?.temperature || 0.7,
tools: tools.map(t => ({ tools: tools.map(t => ({
type: 'function', type: 'function',
function: { function: {

View File

@@ -1,5 +1,5 @@
import {AbortablePromise} from './ai.ts'; import {AbortablePromise} from './ai.ts';
import {LLMMessage, LLMOptions, LLMRequest} from './llm.ts'; import {LLMMessage, LLMRequest} from './llm.ts';
export abstract class LLMProvider { export abstract class LLMProvider {
abstract ask(message: string, options: LLMRequest): AbortablePromise<LLMMessage[]>; abstract ask(message: string, options: LLMRequest): AbortablePromise<LLMMessage[]>;

View File

@@ -1,3 +1,4 @@
import * as cheerio from 'cheerio';
import {$, $Sync} from '@ztimson/node-utils'; import {$, $Sync} from '@ztimson/node-utils';
import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils'; import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils';
import {Ai} from './ai.ts'; import {Ai} from './ai.ts';
@@ -111,9 +112,43 @@ export const PythonTool: AiTool = {
fn: async (args: {code: string}) => ({result: $Sync`python -c "${args.code}"`}) fn: async (args: {code: string}) => ({result: $Sync`python -c "${args.code}"`})
} }
export const SearchTool: AiTool = { export const ReadWebpageTool: AiTool = {
name: 'search', name: 'read_webpage',
description: 'Use a search engine to find relevant URLs, should be changed with fetch to scrape sources', description: 'Extract clean, structured content from a webpage. Use after web_search to read specific URLs',
args: {
url: {type: 'string', description: 'URL to extract content from', required: true},
focus: {type: 'string', description: 'Optional: What aspect to focus on (e.g., "pricing", "features", "contact info")'}
},
fn: async (args: {url: string; focus?: string}) => {
const html = await fetch(args.url, {headers: {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"}})
.then(r => r.text()).catch(err => {throw new Error(`Failed to fetch: ${err.message}`)});
const $ = cheerio.load(html);
$('script, style, nav, footer, header, aside, iframe, noscript, [role="navigation"], [role="banner"], .ad, .ads, .cookie, .popup').remove();
const metadata = {
title: $('meta[property="og:title"]').attr('content') || $('title').text() || '',
description: $('meta[name="description"]').attr('content') || $('meta[property="og:description"]').attr('content') || '',
};
let content = '';
const contentSelectors = ['article', 'main', '[role="main"]', '.content', '.post', '.entry', 'body'];
for (const selector of contentSelectors) {
const el = $(selector).first();
if (el.length && el.text().trim().length > 200) {
content = el.text();
break;
}
}
if (!content) content = $('body').text();
content = content.replace(/\s+/g, ' ').trim().slice(0, 8000);
return {url: args.url, title: metadata.title.trim(), description: metadata.description.trim(), content, focus: args.focus};
}
}
export const WebSearchTool: AiTool = {
name: 'web_search',
description: 'Use duckduckgo (anonymous) to find find relevant online resources. Returns a list of URLs that works great with the `read_webpage` tool',
args: { args: {
query: {type: 'string', description: 'Search string', required: true}, query: {type: 'string', description: 'Search string', required: true},
length: {type: 'string', description: 'Number of results to return', default: 5}, length: {type: 'string', description: 'Number of results to return', default: 5},