Re-organized functions and added semantic embeddings
This commit is contained in:
100
src/llm.ts
100
src/llm.ts
@@ -1,3 +1,4 @@
|
||||
import {pipeline} from '@xenova/transformers';
|
||||
import {JSONAttemptParse} from '@ztimson/utils';
|
||||
import {Ai} from './ai.ts';
|
||||
import {Anthropic} from './antrhopic.ts';
|
||||
@@ -5,6 +6,7 @@ import {Ollama} from './ollama.ts';
|
||||
import {OpenAi} from './open-ai.ts';
|
||||
import {AbortablePromise, LLMProvider} from './provider.ts';
|
||||
import {AiTool} from './tools.ts';
|
||||
import * as tf from '@tensorflow/tfjs';
|
||||
|
||||
export type LLMMessage = {
|
||||
/** Message originator */
|
||||
@@ -81,12 +83,14 @@ export type LLMRequest = {
|
||||
}
|
||||
|
||||
export class LLM {
|
||||
private embedModel: any;
|
||||
private providers: {[key: string]: LLMProvider} = {};
|
||||
|
||||
constructor(public readonly ai: Ai, public readonly options: LLMOptions) {
|
||||
if(options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, options.anthropic.token, options.anthropic.model);
|
||||
if(options.ollama?.host) this.providers.ollama = new Ollama(this.ai, options.ollama.host, options.ollama.model);
|
||||
if(options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, options.openAi.token, options.openAi.model);
|
||||
constructor(public readonly ai: Ai) {
|
||||
this.embedModel = pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
if(ai.options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, ai.options.anthropic.token, ai.options.anthropic.model);
|
||||
if(ai.options.ollama?.host) this.providers.ollama = new Ollama(this.ai, ai.options.ollama.host, ai.options.ollama.model);
|
||||
if(ai.options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, ai.options.openAi.token, ai.options.openAi.model);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -99,11 +103,11 @@ export class LLM {
|
||||
let model: any = [null, null];
|
||||
if(options.model) {
|
||||
if(typeof options.model == 'object') model = options.model;
|
||||
else model = [options.model, (<any>this.options)[options.model]?.model];
|
||||
else model = [options.model, (<any>this.ai.options)[options.model]?.model];
|
||||
}
|
||||
if(!options.model || model[1] == null) {
|
||||
if(typeof this.options.model == 'object') model = this.options.model;
|
||||
else model = [this.options.model, (<any>this.options)[this.options.model]?.model];
|
||||
if(typeof this.ai.options.model == 'object') model = this.ai.options.model;
|
||||
else model = [this.ai.options.model, (<any>this.ai.options)[this.ai.options.model]?.model];
|
||||
}
|
||||
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
|
||||
return this.providers[model[0]].ask(message, {...options, model: model[1]});
|
||||
@@ -117,7 +121,7 @@ export class LLM {
|
||||
* @param {LLMRequest} options LLM options
|
||||
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
|
||||
*/
|
||||
async compress(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
|
||||
async compressHistory(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
|
||||
if(this.estimateTokens(history) < max) return history;
|
||||
let keep = 0, tokens = 0;
|
||||
for(let m of history.toReversed()) {
|
||||
@@ -132,6 +136,57 @@ export class LLM {
|
||||
return [{role: 'assistant', content: `Conversation Summary: ${summary}`, timestamp: Date.now()}, ...recent];
|
||||
}
|
||||
|
||||
embedding(target: object | string, maxTokens = 500, overlapTokens = 50) {
|
||||
const objString = (obj: any, path = ''): string[] => {
|
||||
if(obj === null || obj === undefined) return [];
|
||||
return Object.entries(obj).flatMap(([key, value]) => {
|
||||
const p = path ? `${path}${isNaN(+key) ? `.${key}` : `[${key}]`}` : key;
|
||||
if(typeof value === 'object' && value !== null && !Array.isArray(value)) return objString(value, p);
|
||||
const valueStr = Array.isArray(value) ? value.join(', ') : String(value);
|
||||
return `${p}: ${valueStr}`;
|
||||
});
|
||||
};
|
||||
|
||||
const embed = async (text: string): Promise<number[]> => {
|
||||
const model = await this.embedModel;
|
||||
const output = await model(text, {pooling: 'mean', normalize: true});
|
||||
return Array.from(output.data);
|
||||
};
|
||||
|
||||
// Tokenize
|
||||
const lines = typeof target === 'object' ? objString(target) : target.split('\n');
|
||||
const tokens = lines.flatMap(line => [...line.split(/\s+/).filter(w => w.trim()), '\n']);
|
||||
|
||||
// Chunk
|
||||
const chunks: string[] = [];
|
||||
let start = 0;
|
||||
while (start < tokens.length) {
|
||||
let end = start;
|
||||
let text = '';
|
||||
// Build chunk
|
||||
while (end < tokens.length) {
|
||||
const nextToken = tokens[end];
|
||||
const testText = text + (text ? ' ' : '') + nextToken;
|
||||
const testTokens = this.estimateTokens(testText.replace(/\s*\n\s*/g, '\n'));
|
||||
if (testTokens > maxTokens && text) break;
|
||||
text = testText;
|
||||
end++;
|
||||
}
|
||||
// Save chunk
|
||||
const cleanText = text.replace(/\s*\n\s*/g, '\n').trim();
|
||||
if(cleanText) chunks.push(cleanText);
|
||||
start = end - overlapTokens;
|
||||
if (start <= end - tokens.length + end) start = end; // Safety: prevent infinite loop
|
||||
}
|
||||
|
||||
return Promise.all(chunks.map(async (text, index) => ({
|
||||
index,
|
||||
embedding: await embed(text),
|
||||
text,
|
||||
tokens: this.estimateTokens(text),
|
||||
})));
|
||||
}
|
||||
|
||||
/**
|
||||
* Estimate variable as tokens
|
||||
* @param history Object to size
|
||||
@@ -142,6 +197,35 @@ export class LLM {
|
||||
return Math.ceil((text.length / 4) * 1.2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compare the difference between two strings using tensor math
|
||||
* @param target Text that will checked
|
||||
* @param {string} searchTerms Multiple search terms to check against target
|
||||
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
|
||||
*/
|
||||
fuzzyMatch(target: string, ...searchTerms: string[]) {
|
||||
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
|
||||
|
||||
const vector = (text: string, dimensions: number = 10): number[] => {
|
||||
return text.toLowerCase().split('').map((char, index) =>
|
||||
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
|
||||
}
|
||||
|
||||
const cosineSimilarity = (v1: number[], v2: number[]): number => {
|
||||
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
|
||||
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
|
||||
const dotProduct = tf.dot(tensor1, tensor2)
|
||||
const magnitude1 = tf.norm(tensor1)
|
||||
const magnitude2 = tf.norm(tensor2)
|
||||
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
|
||||
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
|
||||
}
|
||||
|
||||
const v = vector(target);
|
||||
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
|
||||
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
|
||||
}
|
||||
|
||||
/**
|
||||
* Ask a question with JSON response
|
||||
* @param {string} message Question
|
||||
|
||||
Reference in New Issue
Block a user