init
All checks were successful
Publish Library / Build NPM Project (push) Successful in 21s
Publish Library / Tag Version (push) Successful in 7s

This commit is contained in:
2025-10-28 22:15:27 -04:00
commit 2e28ffd152
20 changed files with 4713 additions and 0 deletions

115
src/ai.ts Normal file
View File

@@ -0,0 +1,115 @@
import {$} from '@ztimson/node-utils';
import {createWorker} from 'tesseract.js';
import {LLM, LLMOptions} from './llm';
import fs from 'node:fs/promises';
import Path from 'node:path';
import * as tf from '@tensorflow/tfjs';
export type AiOptions = LLMOptions & {
whisper?: {
/** Whisper binary location */
binary: string;
/** Model */
model: WhisperModel;
/** Working directory for models and temporary files */
path: string;
}
}
export type WhisperModel = 'tiny' | 'base' | 'small' | 'medium' | 'large';
export class Ai {
private downloads: {[key: string]: Promise<void>} = {};
private whisperModel!: string;
/** Large Language Models */
llm!: LLM;
constructor(public readonly options: AiOptions) {
this.llm = new LLM(this, options);
if(this.options.whisper?.binary) this.downloadAsrModel(this.options.whisper.model);
}
/**
* Convert audio to text using Auditory Speech Recognition
* @param {string} path Path to audio
* @param model Whisper model
* @returns {Promise<any>} Extracted text
*/
async asr(path: string, model?: WhisperModel): Promise<string | null> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
if(!model) model = this.options.whisper.model;
await this.downloadAsrModel(<string>model);
const name = Math.random().toString(36).substring(2, 10) + '-' + path.split('/').pop();
const output = Path.join(this.options.whisper.path || '/tmp', name);
await $`rm -f /tmp/${name}.txt && ${this.options.whisper.binary} -nt -np -m ${this.whisperModel} -f ${path} -otxt -of ${output}`;
return fs.readFile(output, 'utf-8').then(text => text?.trim() || null)
.finally(() => fs.rm(output, {force: true}).catch(() => {}));
}
/**
* Downloads the specified Whisper model if it is not already present locally.
*
* @param {string} model Whisper model that will be downloaded
* @return {Promise<void>} A promise that resolves once the model is downloaded and saved locally.
*/
async downloadAsrModel(model: string): Promise<void> {
if(!this.options.whisper?.binary) throw new Error('Whisper not configured');
this.whisperModel = Path.join(<string>this.options.whisper?.path, this.options.whisper?.model + '.bin');
if(await fs.stat(this.whisperModel).then(() => true).catch(() => false)) return;
if(!!this.downloads[model]) return this.downloads[model];
this.downloads[model] = fetch(`https://huggingface.co/ggerganov/whisper.cpp/resolve/main/${this.options.whisper?.model}.bin`)
.then(resp => resp.arrayBuffer()).then(arr => Buffer.from(arr)).then(async buffer => {
await fs.writeFile(this.whisperModel, buffer);
delete this.downloads[model];
});
return this.downloads[model];
}
/**
* Convert image to text using Optical Character Recognition
* @param {string} path Path to image
* @returns {{abort: Function, response: Promise<string | null>}} Abort function & Promise of extracted text
*/
ocr(path: string): {abort: () => void, response: Promise<string | null>} {
let worker: any;
return {
abort: () => { worker?.terminate(); },
response: new Promise(async res => {
worker = await createWorker('eng');
const {data} = await worker.recognize(path);
await worker.terminate();
res(data.text.trim() || null);
})
}
}
/**
* Compare the difference between two strings using tensor math
* @param target Text that will checked
* @param {string} searchTerms Multiple search terms to check against target
* @returns {{avg: number, max: number, similarities: number[]}} Similarity values 0-1: 0 = unique, 1 = identical
*/
semanticSimilarity(target: string, ...searchTerms: string[]) {
if(searchTerms.length < 2) throw new Error('Requires at least 2 strings to compare');
const vector = (text: string, dimensions: number = 10): number[] => {
return text.toLowerCase().split('').map((char, index) =>
(char.charCodeAt(0) * (index + 1)) % dimensions / dimensions).slice(0, dimensions);
}
const cosineSimilarity = (v1: number[], v2: number[]): number => {
if (v1.length !== v2.length) throw new Error('Vectors must be same length');
const tensor1 = tf.tensor1d(v1), tensor2 = tf.tensor1d(v2)
const dotProduct = tf.dot(tensor1, tensor2)
const magnitude1 = tf.norm(tensor1)
const magnitude2 = tf.norm(tensor2)
if(magnitude1.dataSync()[0] === 0 || magnitude2.dataSync()[0] === 0) return 0
return dotProduct.dataSync()[0] / (magnitude1.dataSync()[0] * magnitude2.dataSync()[0])
}
const v = vector(target);
const similarities = searchTerms.map(t => vector(t)).map(refVector => cosineSimilarity(v, refVector))
return {avg: similarities.reduce((acc, s) => acc + s, 0) / similarities.length, max: Math.max(...similarities), similarities}
}
}

133
src/antrhopic.ts Normal file
View File

@@ -0,0 +1,133 @@
import {Anthropic as anthropic} from '@anthropic-ai/sdk';
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
export class Anthropic extends LLMProvider {
client!: anthropic;
constructor(public readonly ai: Ai, public readonly apiToken: string, public model: string) {
super();
this.client = new anthropic({apiKey: apiToken});
}
private toStandard(history: any[]): LLMMessage[] {
for(let i = 0; i < history.length; i++) {
const orgI = i;
if(typeof history[orgI].content != 'string') {
if(history[orgI].role == 'assistant') {
history[orgI].content.filter((c: any) => c.type =='tool_use').forEach((c: any) => {
i++;
history.splice(i, 0, {role: 'tool', id: c.id, name: c.name, args: c.input});
});
} else if(history[orgI].role == 'user') {
history[orgI].content.filter((c: any) => c.type =='tool_result').forEach((c: any) => {
const h = history.find((h: any) => h.id == c.tool_use_id);
h[c.is_error ? 'error' : 'content'] = c.content;
});
}
history[orgI].content = history[orgI].content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n');
}
}
return history.filter(h => !!h.content);
}
private fromStandard(history: LLMMessage[]): any[] {
for(let i = 0; i < history.length; i++) {
if(history[i].role == 'tool') {
const h: any = history[i];
history.splice(i, 1,
{role: 'assistant', content: [{type: 'tool_use', id: h.id, name: h.name, input: h.args}]},
{role: 'user', content: [{type: 'tool_result', tool_use_id: h.id, is_error: !!h.error, content: h.error || h.content}]}
)
i++;
}
}
return history;
}
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]);
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min, options);
const requestParams: any = {
model: options.model || this.model,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
system: options.system || this.ai.options.system || '',
temperature: options.temperature || this.ai.options.temperature || 0.7,
tools: (options.tools || this.ai.options.tools || []).map(t => ({
name: t.name,
description: t.description,
input_schema: {
type: 'object',
properties: t.args ? objectMap(t.args, (key, value) => ({...value, required: undefined})) : {},
required: t.args ? Object.entries(t.args).filter(t => t[1].required).map(t => t[0]) : []
},
fn: undefined
})),
messages: history,
stream: !!options.stream,
};
// Run tool changes
let resp: any;
do {
resp = await this.client.messages.create(requestParams);
// Streaming mode
if(options.stream) {
resp.content = [];
for await (const chunk of resp) {
if(controller.signal.aborted) break;
if(chunk.type === 'content_block_start') {
if(chunk.content_block.type === 'text') {
resp.content.push({type: 'text', text: ''});
} else if(chunk.content_block.type === 'tool_use') {
resp.content.push({type: 'tool_use', id: chunk.content_block.id, name: chunk.content_block.name, input: <any>''});
}
} else if(chunk.type === 'content_block_delta') {
if(chunk.delta.type === 'text_delta') {
const text = chunk.delta.text;
resp.content.at(-1).text += text;
options.stream({text});
} else if(chunk.delta.type === 'input_json_delta') {
resp.content.at(-1).input += chunk.delta.partial_json;
}
} else if(chunk.type === 'content_block_stop') {
const last = resp.content.at(-1);
if(last.input != null) last.input = last.input ? JSONAttemptParse(last.input, {}) : {};
} else if(chunk.type === 'message_stop') {
break;
}
}
}
// Run tools
const toolCalls = resp.content.filter((c: any) => c.type === 'tool_use');
if(toolCalls.length && !controller.signal.aborted) {
history.push({role: 'assistant', content: resp.content});
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = options.tools?.find(findByProp('name', toolCall.name));
if(!tool) return {tool_use_id: toolCall.id, is_error: true, content: 'Tool not found'};
try {
const result = await tool.fn(toolCall.input, this.ai);
return {type: 'tool_result', tool_use_id: toolCall.id, content: JSONSanitize(result)};
} catch (err: any) {
return {type: 'tool_result', tool_use_id: toolCall.id, is_error: true, content: err?.message || err?.toString() || 'Unknown'};
}
}));
history.push({role: 'user', content: results});
requestParams.messages = history;
}
} while (!controller.signal.aborted && resp.content.some((c: any) => c.type === 'tool_use'));
if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {
role: 'assistant',
content: resp.content.filter((c: any) => c.type == 'text').map((c: any) => c.text).join('\n\n')
}]));
});
return Object.assign(response, {abort: () => controller.abort()});
}
}

4
src/index.ts Normal file
View File

@@ -0,0 +1,4 @@
export * from './ai';
export * from './antrhopic';
export * from './llm';
export * from './tools';

161
src/llm.ts Normal file
View File

@@ -0,0 +1,161 @@
import {JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {Anthropic} from './antrhopic.ts';
import {Ollama} from './ollama.ts';
import {OpenAi} from './open-ai.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
import {AiTool} from './tools.ts';
export type LLMMessage = {
/** Message originator */
role: 'assistant' | 'system' | 'user';
/** Message content */
content: string | any;
} | {
/** Tool call */
role: 'tool';
/** Unique ID for call */
id: string;
/** Tool that was run */
name: string;
/** Tool arguments */
args: any;
/** Tool result */
content: undefined | string;
/** Tool error */
error: undefined | string;
}
export type LLMOptions = {
/** Anthropic settings */
anthropic?: {
/** API Token */
token: string;
/** Default model */
model: string;
},
/** Ollama settings */
ollama?: {
/** connection URL */
host: string;
/** Default model */
model: string;
},
/** Open AI settings */
openAi?: {
/** API Token */
token: string;
/** Default model */
model: string;
},
/** Default provider & model */
model: string | [string, string];
} & Omit<LLMRequest, 'model'>;
export type LLMRequest = {
/** System prompt */
system?: string;
/** Message history */
history?: LLMMessage[];
/** Max tokens for request */
max_tokens?: number;
/** 0 = Rigid Logic, 1 = Balanced, 2 = Hyper Creative **/
temperature?: number;
/** Available tools */
tools?: AiTool[];
/** LLM model */
model?: string | [string, string];
/** Stream response */
stream?: (chunk: {text?: string, done?: true}) => any;
/** Compress old messages in the chat to free up context */
compress?: {
/** Trigger chat compression once context exceeds the token count */
max: number;
/** Compress chat until context size smaller than */
min: number
}
}
export class LLM {
private providers: {[key: string]: LLMProvider} = {};
constructor(public readonly ai: Ai, public readonly options: LLMOptions) {
if(options.anthropic?.token) this.providers.anthropic = new Anthropic(this.ai, options.anthropic.token, options.anthropic.model);
if(options.ollama?.host) this.providers.ollama = new Ollama(this.ai, options.ollama.host, options.ollama.model);
if(options.openAi?.token) this.providers.openAi = new OpenAi(this.ai, options.openAi.token, options.openAi.model);
}
/**
* Chat with LLM
* @param {string} message Question
* @param {LLMRequest} options Configuration options and chat history
* @returns {{abort: () => void, response: Promise<LLMMessage[]>}} Function to abort response and chat history
*/
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
let model: any = [null, null];
if(options.model) {
if(typeof options.model == 'object') model = options.model;
else model = [options.model, (<any>this.options)[options.model]?.model];
}
if(!options.model || model[1] == null) {
if(typeof this.options.model == 'object') model = this.options.model;
else model = [this.options.model, (<any>this.options)[this.options.model]?.model];
}
if(!model[0] || !model[1]) throw new Error(`Unknown LLM provider or model: ${model[0]} / ${model[1]}`);
return this.providers[model[0]].ask(message, {...options, model: model[1]});
}
/**
* Compress chat history to reduce context size
* @param {LLMMessage[]} history Chatlog that will be compressed
* @param max Trigger compression once context is larger than max
* @param min Summarize until context size is less than min
* @param {LLMRequest} options LLM options
* @returns {Promise<LLMMessage[]>} New chat history will summary at index 0
*/
async compress(history: LLMMessage[], max: number, min: number, options?: LLMRequest): Promise<LLMMessage[]> {
if(this.estimateTokens(history) < max) return history;
let keep = 0, tokens = 0;
for(let m of history.toReversed()) {
tokens += this.estimateTokens(m.content);
if(tokens < min) keep++;
else break;
}
if(history.length <= keep) return history;
const recent = keep == 0 ? [] : history.slice(-keep),
process = (keep == 0 ? history : history.slice(0, -keep)).filter(h => h.role === 'assistant' || h.role === 'user');
const summary = await this.summarize(process.map(m => `${m.role}: ${m.content}`).join('\n\n'), 250, options);
return [{role: 'assistant', content: `Conversation Summary: ${summary}`}, ...recent];
}
/**
* Estimate variable as tokens
* @param history Object to size
* @returns {number} Rough token count
*/
estimateTokens(history: any): number {
const text = JSON.stringify(history);
return Math.ceil((text.length / 4) * 1.2);
}
async json(message: string, options: LLMRequest) {
let resp = await this.ask(message, {
system: '',
...options
});
if(!resp?.[0]?.content) return {};
return JSONAttemptParse(new RegExp('\{[\s\S]*\}').exec(resp[0].content), {});
}
/**
* Create a summary of some text
* @param {string} text Text to summarize
* @param {number} tokens Max number of tokens
* @param options LLM request options
* @returns {Promise<string>} Summary
*/
summarize(text: string, tokens: number, options?: LLMRequest): Promise<string | null> {
return this.ask(text, {system: `Generate a brief summary <= ${tokens} tokens. Output nothing else`, temperature: 0.3, ...options})
.then(history => <string>history.pop()?.content || null);
}
}

113
src/ollama.ts Normal file
View File

@@ -0,0 +1,113 @@
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
import {Ollama as ollama} from 'ollama';
export class Ollama extends LLMProvider {
client!: ollama;
constructor(public readonly ai: Ai, public host: string, public model: string) {
super();
this.client = new ollama({host});
}
private toStandard(history: any[]): LLMMessage[] {
for(let i = 0; i < history.length; i++) {
if(history[i].role == 'assistant' && history[i].tool_calls) {
if(history[i].content) delete history[i].tool_calls;
else {
history.splice(i, 1);
i--;
}
} else if(history[i].role == 'tool') {
const error = history[i].content.startsWith('{"error":');
history[i] = {role: 'tool', name: history[i].tool_name, args: history[i].args, [error ? 'error' : 'content']: history[i].content};
}
}
return history;
}
private fromStandard(history: LLMMessage[]): any[] {
return history.map((h: any) => {
if(h.role != 'tool') return h;
return {role: 'tool', tool_name: h.name, content: h.error || h.content}
});
}
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => {
let system = options.system || this.ai.options.system;
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]);
if(history[0].roll == 'system') {
if(!system) system = history.shift();
else history.shift();
}
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min);
if(options.system) history.unshift({role: 'system', content: system})
const requestParams: any = {
model: options.model || this.model,
messages: history,
stream: !!options.stream,
signal: controller.signal,
options: {
temperature: options.temperature || this.ai.options.temperature || 0.7,
num_predict: options.max_tokens || this.ai.options.max_tokens || 4096,
},
tools: (options.tools || this.ai.options.tools || []).map(t => ({
type: 'function',
function: {
name: t.name,
description: t.description,
parameters: {
type: 'object',
properties: t.args ? objectMap(t.args, (key, value) => ({...value, required: undefined})) : {},
required: t.args ? Object.entries(t.args).filter(t => t[1].required).map(t => t[0]) : []
}
}
}))
}
// Run tool chains
let resp: any;
do {
resp = await this.client.chat(requestParams);
if(options.stream) {
resp.message = {role: 'assistant', content: '', tool_calls: []};
for await (const chunk of resp) {
if(controller.signal.aborted) break;
if(chunk.message?.content) {
resp.message.content += chunk.message.content;
options.stream({text: chunk.message.content});
}
if(chunk.message?.tool_calls) resp.message.tool_calls = chunk.message.tool_calls;
if(chunk.done) break;
}
}
// Run tools
if(resp.message?.tool_calls?.length && !controller.signal.aborted) {
history.push(resp.message);
const results = await Promise.all(resp.message.tool_calls.map(async (toolCall: any) => {
const tool = (options.tools || this.ai.options.tools)?.find(findByProp('name', toolCall.function.name));
if(!tool) return {role: 'tool', tool_name: toolCall.function.name, content: '{"error": "Tool not found"}'};
const args = typeof toolCall.function.arguments === 'string' ? JSONAttemptParse(toolCall.function.arguments, {}) : toolCall.function.arguments;
try {
const result = await tool.fn(args, this.ai);
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize(result)};
} catch (err: any) {
return {role: 'tool', tool_name: toolCall.function.name, args, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
}
}));
history.push(...results);
requestParams.messages = history;
}
} while (!controller.signal.aborted && resp.message?.tool_calls?.length);
if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {role: 'assistant', content: resp.message?.content}]));
});
return Object.assign(response, {abort: () => controller.abort()});
}
}

130
src/open-ai.ts Normal file
View File

@@ -0,0 +1,130 @@
import {OpenAI as openAI} from 'openai';
import {findByProp, objectMap, JSONSanitize, JSONAttemptParse} from '@ztimson/utils';
import {Ai} from './ai.ts';
import {LLMMessage, LLMRequest} from './llm.ts';
import {AbortablePromise, LLMProvider} from './provider.ts';
export class OpenAi extends LLMProvider {
client!: openAI;
constructor(public readonly ai: Ai, public readonly apiToken: string, public model: string) {
super();
this.client = new openAI({apiKey: apiToken});
}
private toStandard(history: any[]): LLMMessage[] {
for(let i = 0; i < history.length; i++) {
const h = history[i];
if(h.role === 'assistant' && h.tool_calls) {
const tools = h.tool_calls.map((tc: any) => ({
role: 'tool',
id: tc.id,
name: tc.function.name,
args: JSONAttemptParse(tc.function.arguments, {})
}));
history.splice(i, 1, ...tools);
i += tools.length - 1;
} else if(h.role === 'tool' && h.content) {
const record = history.find(h2 => h.tool_call_id == h2.id);
if(record) {
if(h.content.includes('"error":')) record.error = h.content;
else record.content = h.content;
}
history.splice(i, 1);
i--;
}
}
return history;
}
private fromStandard(history: LLMMessage[]): any[] {
return history.reduce((result, h) => {
if(h.role === 'tool') {
result.push({
role: 'assistant',
content: null,
tool_calls: [{ id: h.id, type: 'function', function: { name: h.name, arguments: JSON.stringify(h.args) } }],
refusal: null,
annotations: [],
}, {
role: 'tool',
tool_call_id: h.id,
content: h.error || h.content
});
} else {
result.push(h);
}
return result;
}, [] as any[]);
}
ask(message: string, options: LLMRequest = {}): AbortablePromise<LLMMessage[]> {
const controller = new AbortController();
const response = new Promise<any>(async (res, rej) => {
let history = this.fromStandard([...options.history || [], {role: 'user', content: message}]);
if(options.compress) history = await this.ai.llm.compress(<any>history, options.compress.max, options.compress.min, options);
const requestParams: any = {
model: options.model || this.model,
messages: history,
stream: !!options.stream,
max_tokens: options.max_tokens || this.ai.options.max_tokens || 4096,
temperature: options.temperature || this.ai.options.temperature || 0.7,
tools: (options.tools || this.ai.options.tools || []).map(t => ({
type: 'function',
function: {
name: t.name,
description: t.description,
parameters: {
type: 'object',
properties: t.args ? objectMap(t.args, (key, value) => ({...value, required: undefined})) : {},
required: t.args ? Object.entries(t.args).filter(t => t[1].required).map(t => t[0]) : []
}
}
}))
};
// Tool call and streaming logic similar to other providers
let resp: any;
do {
resp = await this.client.chat.completions.create(requestParams);
// Implement streaming and tool call handling
if(options.stream) {
resp.choices = [];
for await (const chunk of resp) {
if(controller.signal.aborted) break;
if(chunk.choices[0].delta.content) {
options.stream({text: chunk.choices[0].delta.content});
}
}
}
// Run tools
const toolCalls = resp.choices[0].message.tool_calls || [];
if(toolCalls.length && !controller.signal.aborted) {
history.push(resp.choices[0].message);
const results = await Promise.all(toolCalls.map(async (toolCall: any) => {
const tool = options.tools?.find(findByProp('name', toolCall.function.name));
if(!tool) return {role: 'tool', tool_call_id: toolCall.id, content: '{"error": "Tool not found"}'};
try {
const args = JSONAttemptParse(toolCall.function.arguments, {});
const result = await tool.fn(args, this.ai);
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize(result)};
} catch (err: any) {
return {role: 'tool', tool_call_id: toolCall.id, content: JSONSanitize({error: err?.message || err?.toString() || 'Unknown'})};
}
}));
history.push(...results);
requestParams.messages = history;
}
} while (!controller.signal.aborted && resp.choices?.[0]?.message?.tool_calls?.length);
if(options.stream) options.stream({done: true});
res(this.toStandard([...history, {role: 'assistant', content: resp.choices[0].message.content || ''}]));
});
return Object.assign(response, {abort: () => controller.abort()});
}
}

7
src/provider.ts Normal file
View File

@@ -0,0 +1,7 @@
import {LLMMessage, LLMOptions, LLMRequest} from './llm.ts';
export type AbortablePromise<T> = Promise<T> & {abort: () => void};
export abstract class LLMProvider {
abstract ask(message: string, options: LLMRequest): AbortablePromise<LLMMessage[]>;
}

138
src/tools.ts Normal file
View File

@@ -0,0 +1,138 @@
import {$, $Sync} from '@ztimson/node-utils';
import {ASet, consoleInterceptor, Http, fn as Fn} from '@ztimson/utils';
import {Ai} from './ai.ts';
export type AiToolArg = {[key: string]: {
/** Argument type */
type: 'array' | 'boolean' | 'number' | 'object' | 'string',
/** Argument description */
description: string,
/** Required argument */
required?: boolean;
/** Default value */
default?: any,
/** Options */
enum?: string[],
/** Minimum value or length */
min?: number,
/** Maximum value or length */
max?: number,
/** Match pattern */
pattern?: string,
/** Child arguments */
items?: {[key: string]: AiToolArg}
}}
export type AiTool = {
/** Tool ID / Name - Must be snail_case */
name: string,
/** Tool description / prompt */
description: string,
/** Tool arguments */
args?: AiToolArg,
/** Callback function */
fn: (args: any, ai: Ai) => any | Promise<any>,
};
export const CliTool: AiTool = {
name: 'cli',
description: 'Use the command line interface, returns any output',
args: {command: {type: 'string', description: 'Command to run', required: true}},
fn: (args: {command: string}) => $`${args.command}`
}
export const DateTimeTool: AiTool = {
name: 'get_datetime',
description: 'Get current date and time',
args: {},
fn: async () => new Date().toISOString()
}
export const ExecTool: AiTool = {
name: 'exec',
description: 'Run code/scripts',
args: {
language: {type: 'string', description: 'Execution language', enum: ['cli', 'node', 'python'], required: true},
code: {type: 'string', description: 'Code to execute', required: true}
},
fn: async (args, ai) => {
try {
switch(args.type) {
case 'bash':
return await CliTool.fn({command: args.code}, ai);
case 'node':
return await JSTool.fn({code: args.code}, ai);
case 'python': {
return await PythonTool.fn({code: args.code}, ai);
}
}
} catch(err: any) {
return {error: err?.message || err.toString()};
}
}
}
export const FetchTool: AiTool = {
name: 'fetch',
description: 'Make HTTP request to URL',
args: {
url: {type: 'string', description: 'URL to fetch', required: true},
method: {type: 'string', description: 'HTTP method to use', enum: ['GET', 'POST', 'PUT', 'DELETE'], default: 'GET'},
headers: {type: 'object', description: 'HTTP headers to send', default: {}},
body: {type: 'object', description: 'HTTP body to send'},
},
fn: (args: {
url: string;
method: 'GET' | 'POST' | 'PUT' | 'DELETE';
headers: {[key: string]: string};
body: any;
}) => new Http({url: args.url, headers: args.headers}).request({method: args.method || 'GET', body: args.body})
}
export const JSTool: AiTool = {
name: 'exec_javascript',
description: 'Execute commonjs javascript',
args: {
code: {type: 'string', description: 'CommonJS javascript', required: true}
},
fn: async (args: {code: string}) => {
const console = consoleInterceptor(null);
const resp = await Fn<any>({console}, args.code, true).catch((err: any) => console.output.error.push(err));
return {...console.output, return: resp, stdout: undefined, stderr: undefined};
}
}
export const PythonTool: AiTool = {
name: 'exec_javascript',
description: 'Execute commonjs javascript',
args: {
code: {type: 'string', description: 'CommonJS javascript', required: true}
},
fn: async (args: {code: string}) => ({result: $Sync`python -c "${args.code}"`})
}
export const SearchTool: AiTool = {
name: 'search',
description: 'Use a search engine to find relevant URLs, should be changed with fetch to scrape sources',
args: {
query: {type: 'string', description: 'Search string', required: true},
length: {type: 'string', description: 'Number of results to return', default: 5},
},
fn: async (args: {
query: string;
length: number;
}) => {
const html = await fetch(`https://html.duckduckgo.com/html/?q=${encodeURIComponent(args.query)}`, {
headers: {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)", "Accept-Language": "en-US,en;q=0.9"}
}).then(resp => resp.text());
let match, regex = /<a .*?href="(.+?)".+?<\/a>/g;
const results = new ASet<string>();
while((match = regex.exec(html)) !== null) {
let url = /uddg=(.+)&amp?/.exec(decodeURIComponent(match[1]))?.[1];
if(url) url = decodeURIComponent(url);
if(url) results.add(url);
if(results.size >= (args.length || 5)) break;
}
return results;
}
}